검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The change in volatile compound composition of three wild chrysanthemum species (Chrysanthemum boreale, C. indicum, and C. indicum var. albescens) was identified and analyzed according to four flowering stages using HS-SPME-GC-MS (headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry). The top five compounds of each flowering stage were selected because those main compounds accounted for 43.25%, 44.14%, and 54.20% of the total relative content of volatile compounds from C. boreale, C. indicum, and C. indicum var. albescens, respectively. Nine compounds (1S-α-pinene, α-thujone, chrysanthenone, umbellulone, thymol, caryophyllene, germacrene D, α-zingiberene, and α-patchoulene) in C. boreale were ranked in the top five compounds through the whole flowering stages. In C. indicum, camphene, eucalyptol, camphor, umbellulone, bornyl acetate, caryophyllene, β-farnesene, germacrene D, and α-zingiberene were ranked in the top five compounds. However, only five compounds (camphor, bornyl acetate, β-farnesene, germacrene D, and α-zingiberene) were ranked in C. indicum var. albescens showing a more stable composition rather than C. boreale and C. indicum. Flowerheads of three wild Chrysanthemums showed a different profile of volatile compounds according to different flowering stages, varying compositions, and relative content in the top five volatile compounds. This study illustrates how main volatile compounds in wild chrysanthemums change dynamically during the flowering regarding compositions and their relative contents, suggesting that it should provide a useful index for harvesting or blending certain target compounds from wild chrysanthemums.
        4,000원
        2.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The results of gas chromatography–mass spectrometry (GC–MS) demonstrate that the volatiles captured by diamond grown by chemical vapour deposition (CVD) technology contain hydrocarbons and their derivatives (72.2 rel. %). We have identified aliphatic (paraffins and olefins), cyclic (naphthenes and arenes) and oxygenated (alcohols, aldehydes, ketones and carboxylic acids) hydrocarbons, as well as nitrogenated and sulfonated compounds. Water, negligible amounts of CO2 and Ar were also detected among the volatile components.
        4,000원
        3.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the volatile flavor composition of essential oils from Chrysanthemum zawadskii var. latilobum Kitamura and Aster yomena Makino. The essential oils obtained by the hydrodistillation extraction method from the aerial parts of the plants were analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). One hundred (95.04%) volatile flavor compounds were identified in the essential oil from the C. zawadskii var. latilobum Kitamura. The major compounds were valencene (10.82%), δ-cadinol (9.77%), hexadecanoic acid (8.70%), 2-methyl-4-(2,6,6-trimethylcyclohex-1-enyl) but-2-en-1-ol (3.67%), and 2-(2,4-hexadiynylidene)-1,6-dioxaspiro[4,4]non-3-ene (3.57%). Ninety-eight (93.83%) volatile flavor compounds were identified in the essential oil from the Aster yomena Makino. The major compounds were and 3-eicosyne (13.61%), 9,10,12-octadecatrienoic acid (7.8%), α-caryophyllene alcohol (6.83%), 9-octadecynoic acid (6.03%), and α-caryophyllene (5.74%). Although the two plants are apparently very similar, the chemical composition of the essential oils was significantly different in quality and quantity. In the case of C. zawadskii var. latilobum Kitamura, the sesquiterpene, valencene was found to be 10.82%, but it was not identified in A. yomena Makino. δ-Cadinol appeared higher in C. zawadskii var. latilobum Kitamura than in A. yomena Makino. A clear characteristic of A. yomena Makino essential oil is that it has a high content of caryophyllene derivatives. The α-caryophyllene alcohol contained in A. yomena Makino was relatively high at 6.83%, although the compound was not identified in C. zawadskii var. latilobum Kitamura. Also α-caryophyllene was shown to be higher in A. yomena Makino than in C. zawadskii var. latilobum Kitamura.
        4,000원
        4.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the chemical composition of burdock (Arctium lappa L.) leaves essential oil, and the quantitative changes of the major terpene compounds according to the specific harvesting season. The essential oils obtained by the hydrodistillation extraction (HDE) method from the aerial parts of the burdock leaves were analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). The essential oil composition of this plant was characterized by the higher content of phytol and 6,10,14-trimethyl-2-pentadecanone. Seventy seven (98.28%) volatile flavor compounds were identified in the essential oil from the burdock leaves harvested during the spring season of 2012, and phytol (33.47%) and 6,10,14-trimethyl-2-pentadecanone (32.47%) were the most abundant compounds. Eighty eight (99.08%) compounds were identified in the essential oil from the leaves harvested during the autumn season of 2012, and in this case, phytol (37.35%) and 6,10,14-trimethyl-2-pentadecanone (34.67%) were also the most abundant compounds. These two volatile components were confirmed as the major oil components of the burdock leaves during the time of any harvest. The ratio between the two components contained in the burdock essential oils did not differ significantly by harvesting season. But overall, the essential oil harvested during the spring season contained 65.94% of the two major components, while for the essential oil harvested during the autumn season, the total amount of these two major components was 72.02%. While the main ingredients of the essential oils were found to be unchanged from one harvest time to the next, it was found to differ in content. For the burdock leaves, the quality index of the volatile constituents according to the harvest time would be more useful for utilizing the total quantity other than the proportion between phytol and 6,10,4-trimethyl-2-pentadecone.
        4,000원
        5.
        2018.04 구독 인증기관·개인회원 무료
        The potato tuber moth (PTM) is a cosmopolitan insect pest and hosts various solanaceous crops including tomato. We tested olfactory behavior and larval development of PTM on different varieties of tomato fruit namely, Money maker, Campari, Ailsa craig, LA 3475 (M82) and E-6203, and one wild species, S. pimpinellifolium. We also analyzed essential oil of the tomato fruits through GC/MS. There were significance differences in immature developmental period and head capsule size among the tested varieties. PTM larvae showed highest survival on Ailsa craig (66.0±6.0) and E-6203 (64.0±4.0) and lowest on S. pimpinellifolium (14.0±6.0). The major compounds found in the tomato fruit’s essential oils include n-hexadecanoic acid (14.2%) and 2-octylcyclopropaneoctanal (8.7%) in Money makers; hexadecanoic acid, 2-hydroxy -1-(hydroxymethyl) ethyl ester (13.1%) in Campari; tert-hexadecanethiol (6.8%) and 1,4-benzenedicarboxylic acid, bis (2-ethylhexyl) ester (6.2%) in Ailsa craig; (Z)-13-docosenamide (13.39) in S. pimpinellifolium; Eicosane (4.4%,), (Z)-9 -octadecenamide (4.2%), and n-hexadecanoic acid (4.1%) in E-6208. The larval development result on tomato fruit could support its suitable nutritional contents to PTM, posing pest potential in the future where higher exposure is expected.
        6.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the chemical composition of headspace gas from white-flowered lotus (Nelumbo nucifera Gaertner). Volatile flavor compositions of headspace from white-flowered lotus (floral leaf, stamen, flower stalk, stem) were investigated through the solid-phase microextraction method using polydimethylsiloxane-divinylbenzene fiber. The headspace was directly transferred to a gas chromatography-mass spectrometry. Sixty-three volatile flavor constituents were detected in the headspace of lotus floral leaves, and undecanoic acid (7.81%) was the most abundant component. Fifty-three volatile flavor constituents were detected in the headspace of lotus stamina, and isobutylidene phthalide (7.94%) was the most abundant component. Forty-four volatile flavor constituents were detected in the headspace of lotus flower stalks, and 3-butyl dihydrophthalide (11.23%) was the most abundant component. Fifty-nine volatile flavor constituents were detected in the headspace of lotus stems, and ligustilide (16.15%) was the most abundant component. The content of phthalides was higher in the headspace of flower stalks and stems, while alcohols and acids were the predominant compounds in lotus floral leaves.
        4,000원
        7.
        2012.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        마늘의 다양한 생리활성 기능은 잘 알려져 있음에도 불구하고 휘발성 황 화합물을 비롯한 마늘의 독특한 향과 맛으로 인해 가공식품 및 건강기능식품으로 활용하는데 있어 제한점이 많다. 따라서 본 연구에서는 대표적인 김치 발효균인 Lactobacillus plantarum KCTC 3104를 이용하여 마늘을 유산 발효시키고, 발효 마늘을 다시 적정 온도로 가열 처리함으로써 발효과정과 열처리가 마늘의 휘발성 황화합물과 항산화 활성에 어떠한 영향을 미치는지 평가하고자 하였다. 본 연구의 결과를 요약하자면 다음과 같다. (i)마늘에 존재하는 주요 휘발성 황 화합물인 allyl methyl sulfide 및 allyl sulfide, diallyl disulfide는 발효과정과 발효와 열처리 병행과정에서 감소하였으며 특히 열처리는 마늘의 자극적 향미성분을 감소시키는데 크게 기여하였다. (ii)무처리한 G와 발효를 한 FG, 그리고 발효와 열처리를 병행한 FG-H 간에 유의적인 peroxyl radical 소거활성은 차이는 없었다. (iii) 발효와 열처리를 병행한 FG-H는 마늘시료 G 에 비하여 hydroxyl raidcal 소거활성이 증가하였으며 이 증가된 hydroxyl radical 소거활성은 발효 및 열처리를 통해 새로이 생성된 물질에 의한 환원력 및 metal chelating 활성 증가에 기인된 것으로 추측된다. 이상의 연구결과는 발효 및 열처리를 통해 마늘의 자극적 향미를 개선할 수 있다는 가능성을 제시할 뿐만 아니라, 발효 및 열처리 마늘은 항산화 활성, 특히 hydroxyl radical 소거활성이 증가된 식품개발에 기초자료로 사용될 수 있을 것으로 생각된다.
        4,000원
        9.
        2022.11 KCI 등재 서비스 종료(열람 제한)
        The aim of this study was to investigate the amount (i.e., retention volume) and chemical composition of Natural volatile organic compounds (NVOCs) across different sites in a temperate forest. The three forest sites that were considered include riparian zones (site 1), streams (site 2), and densely-canopied areas (site 3). From May to October 2021, a mini pump was used to measure the collected NVOCs. These measurements were conducted once a month, from 10:30 am to 11:30 am; these times encompass peak visitation times. In the tree layers of the site 1 and 2, Quercus acuta was dominant, whereas Camellia japonica dominated their subtree layers. On the other hand, the tree layer of site 3 was dominated by Castanopsis sieboldii, whereas Camellia japonica dominated its subtree layer. The retention volume and chemical composition of NVOCs was as follows: benzaldehyde (107.528ppm), α-pinene (37.868ppm), linalool (16.258ppm), eucalyptol (14.818ppm), and sabinene hydrate (14.679ppm). In particular, the retention volume of benzaldehyde decreased as temperature increased. In contrast, the retention volume of α-pinene increased as the temperature increased. The differences in forest topography across the studies sites were in the following order: riparian area> forest area> stream area.
        11.
        2011.02 KCI 등재 서비스 종료(열람 제한)
        Biological characteristics of 5 Zanthoxylum schinifolium (Zs) fruits such as Z1 (early August), Z2 (middle August), Z3 (middle September), Z4 (early October) and Z5 (middle October) according to harvesting time were evaluated. As fruits ripened, average weight of Zs increased from 4.8mg (Z1) to 50.7mg (Z5), while moisture contents decreased from 74.6% (Z1) to 55.2% (Z5). Crude fat contents of the fruits during ripening increased from 1% (Z1) to 10.6% (Z5). The major fatty acids in Zs were palmitic (C16:0), palmitoleic (C16:1), oleic (C18:1), and linoleic (C18:2) acids. Linoleic acid (C18:2) was a main fatty acid in Z1 and Z2, whereas oleic acid (C18:1) was found as a main one in the other Zs. The ratio of unsaturated fatty acid to total fatty acids increased from 60% (Z1) to 80% (Z3~Z5) during ripening. Among ripening stages, Z4 had the highest contents of total fatty acids (3,355μg/g) and total unsaturated fatty acids (2,753μg/g). Forty six volatile compounds in Zs were also identified. The major volatile compounds were α-pinene, β-myrcene, β-ocimene, 2-nonanone, estragole, 2-undecanone, and β-caryophyllene. Major volatile components of Z1 were β-ocimene (20.8 peak area %) and α-pinene (9.7 peak area %). In Z2, estragole (30.1 peak area %) was a main volatile compound, but the contents of α-pinene (0.4 peak area %), β-myrcene (0.3 peak area %), and β-ocimene (0.6 peak area %) were lower than those in Z1. Especially, estragole used as perfumes and as a food additive for flavor was drastically increased to 91.2 (Z3) and 92% (Z4) as fruits ripened.
        13.
        2002.09 KCI 등재 서비스 종료(열람 제한)
        산초에서 시기에 따라 차이가 크게 나타나는 주요성분은 hexanal, (E)-2-hexenal, α-pinene, myrcene, (Z)-ocimene+limonene, (E)-β-ocimene, linalool, citronellal, estragole 이었으며, 특히 estragole은 모든 지역에서 공통적으로 나타났다. 초피에서 시기에 따라 차이를 보이는 성분은 hexanal, (Z)-3-hexenol, n-hexanol, α-pinene, limonene, 1,8-cineole, citronellal, estragole, citronellol 이었으며, 이중 (Z)-3-hexenol α-pinene, limonene, citronellal이 모든 지역에서 공통으로 나타났다. 수목원에서 월별 변화를 보이는 성분을 관찰한 결과. 산초는 α-pinene, myrcene, (Z)-3-hexenyl acetate, α-phellandrene, (Z)-ocimene+limonene, β-phellandrene, linalool, geranyl acetate 이였으며, 초피는 hexanal, (Z)-3-hexenol, (E)-2-hexenal, n-hexanol, α-pinene, (Z)-ocimene, limonene, citronellal, geranyl acetate, β-caryophyllene 이였다. 그러나 지역별 채집한 개체에 나타났던 estragole이 수목원에 식재된 산초나무 잎에서 미량으로만 존재한 이유는 열매를 맺지 못할 정도의 어린나무였기 때문이라고 생각되어 estragole 성분은 열매를 맺는 시기에 증가되는 성분이라 사료되었다.
        14.
        2002.06 KCI 등재 서비스 종료(열람 제한)
        Equilibrium headspace analysis in combination with gas chromatography/mass spectrometry (GC/MS) was used to identify volatile compounds from the leaves of 76 individual plants of Agastache rugosa collected from 16 regions in South Korea. Chemometric inves
        18.
        1998.09 KCI 등재 서비스 종료(열람 제한)
        Volatile components were extracted from leaves of two Boxthorn (Lycium chinense M.) cultivars by using simultaneous distillation and extraction, analyzed by gas chromatography-mass spectrometry. Seventy components were identified : 13 acids, 15 alcohols, 18 hydrocarbons, 13 carbonyls, three esters, three ionones, and five others. The principal volatile components (and their peak area percentage) were n-pentanol (11.2~30.2%), phytol (14.5~28.3%), hexadecanoic acid (13.5~17.1%) 2,3-dihydrobenzofuran (1.5~4.2%), benzyl alcohol (1.9-4.8%), phenylacetaldehyde (1.8~3.2%), and octadecadienoic acid (1.7~10.7%). Fresh leaves showed much higher peak area than that of dried leaf in n-pentanol, n-hexanol, cis-2-penten-l-ol, cis-3-hexen-l-ol, benzyl alcohol, and β -phenylethyl alcohol, while dried leaves showed much higher content than that of fresh leaves in 9-hydroxytheaspran A, octadecanoic acid and octadecadienic acid.