검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        2.
        2016.05 구독 인증기관·개인회원 무료
        In olefin/paraffin separation process, new technology such as membrane separation process has been ever demanding for both economic and environmental reasons. facilitated olefin transport membrane, containing positively charged silver nanoparticles (Ag NPs) by electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) as olefin carriers dispersed in poly(vinyl pyrrolidone) (PVP), shows extremely high separation performance for propylene/propane mixtures. However, higher permeance is always demanding for practical applications. In this study, POSSs were added to PVP/Ag NPs/TCNQ membranes. Among various kinds of POSS, trisilanolisooctyl POSS showed higher permeance with a moderate selectivity. Therefore it is concluded that mesoporous POSS is an effective additive in improving the gas permeance.
        3.
        2011.06 구독 인증기관 무료, 개인회원 유료
        해수의 수송이 바다목장화 해역에 미치는 영향을 알아보기 위하여 조석과 바람, 수온 및 염분의 효과를 고려한 해수 유동 모델을 관측한 자료를 토대로 하여 구축하였다. 현장 관측 결과 중층에서 유속이 가장 강하게 나타났으며, 조화분해 결과 반일주조가 강한 혼합조의 형 태로 나타났다. 조류 효과만을 고려하였을 경우, 해수는 어류목장에서 갑각류목장으로, 갑각류목장에서 패류목장으로 수송되었다. 조석과 바람, 수온 및 염분의 효과를 고려한 잔차류의 경우에는 어류목장에서 갑각류목장으로, 패류목장에서 갑각류목장으로 해수가 수송되었다. 한편, 해수 의 최대 수송은 조류나 잔차류의 2가지의 경우 모두가 동일하게 어류목장에서 갑각류목장으로 이동할 때 나타났다.
        4,000원
        4.
        2012.05 KCI 등재 서비스 종료(열람 제한)
        고정확도를 보장할 수 있는 Compact Finite Volume Method를 이용하여 수심적분형 흐름 모형과 수심평균된 이송확산방정식을 해석하는 수치모형 개발과정을 기술하였다. 이차원의 흐름과 파랑의 상호작용에 대한 실험결과와 제시된 수치모형을 이용한 계산결과는 양호하게 일치하였다. 일차원과 이차원공간에서의 흐름에 의한 스칼라의 이송에 관한 수치모의에서도 수차확산이 거의 발견되지 않았고, 매우 정확히 일치하였다. 개수로에서의 난류혼합에 관한 수치모의 결과에서도 합리적인 스칼라의 혼합양상이 관찰되었다.
        5.
        2011.08 KCI 등재 서비스 종료(열람 제한)
        In order to estimate volume transport by upwelling for single artificial seamount, same shape and size of artificial seamount already deployed was applied to numerical experiment. The result showed that strong upwelling appeared at front while took place downwelling at rear. The strongest upwelling existed at the top of the artificial seamount. Volume transport by upwelling was computed as 785 m3/s. Column arrangement was applied to two artificial seamount in three cases; case 1) no clearance, case 2) sixty-five meters of clearance as half of artificial seamount’s length, and case 3) hundred-thirty meters of clearance as an artificial seamount’s length. All cases of column arrangements showed more upwelling volume transport than that of single seamount. Particularly, the case of no clearance calculated as 106% and appeared the most upwelling effect comparing to two other cases. Row arrangement was also applied to two artificial seamount in three cases; case 4) no clearance, case 5) forty meters of clearance as an artificial seamount’s width, and case 6) eighty meters of clearance as twice of artificial seamount’s width. Upwelling volume transport in case 4 increased 48% than the case of single seamount. Other two cases of 5 and 6 were estimated as 97% increased and more effective than case 4. According to the case experiments, column arrangements show more upwelling volume transport than that of row arrangements. In cases of column arrangements, with decreasing clearance between two seamount, the effect increases while showing maximum value at clearance zero. In cases of row arrangements, on the contrary, with decreasing clearance between two seamount, the effect decreases while showing minimum value at clearance zero. Since simple barotropic condition was considered for this study, further study is necessary by considering baroclinic condition to get close to reality. In conclusion, in deploying artificial seamount, optimal arrangement should be well designed to enhance primary and secondary productivity and to increase the diversity of species as well as reducing time and space.
        6.
        1998.06 KCI 등재 서비스 종료(열람 제한)
        The volume transport and turnover time of the Deukryang Bay, located at the southern area of Korea, were calculated based on the current meter(RCM-7,ACM 16M) data observed at the three gateways of the Bay in May and October of 1996. Dominant tidal current component was calculated through harmonic analysis from raw data to estimate influence tidal current and also residual current was measured by integrating observed data and then averaging on time. Maximum speed of current was about 100㎝/sec during the spring tide at the waterway between Kumdangdo and Kogumdo. The total water volume transports through three entrances of the bay in May and October were 3.9×10^-2 Sv, 3.4×10^-2 Sv(1Sv=10^6㎥s^-1) and turnover time were 0.97day, 1.12day, respectively. Semidiurnal tides were predominant (70∼85%). The water volume transports by residual currents were 2∼4% of total water volume transports. The average fraction of fresh water calculated by tidal prism method using salinity difference between inflow current and outflow current through three entrances in Deukryang Bay was about 0.06% of total volume and the flushing time of fresh water was estimated as 0.97day.