검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 117

        66.
        2003.06 구독 인증기관·개인회원 무료
        Using a developed high-frequency induction heated combustion method. the simultaneous synthesis and densification of WC-xvol.%Co() hard materials was accomplished using elemental powders of W, C and Co. A complete synthesis and densification of the materials was achieved in one step within a duration of 1min. The final relative densities of the composite were over 98.5% for all cases, under the applied pressure of 60 MPa and the induced current. The hardness of the composites decreases and the fracture toughness increases with increasing cobalt content. As the carbon to tungsten ration increases, the hardness increase, but the fracture toughness decreases. The maximum values for the fracture toughness and hardness are 15.1 (at 20vol.%Co, W:C=1:1), and 1928 (at 5vol.%Co, W:C=1:1.3), respectively. Therefore we concluded that the HFIHCS method. which can produce WC-xvol.%Co within 1 minute in one step is superior to conventional ones.
        67.
        2003.06 구독 인증기관·개인회원 무료
        1) Using a developed high-frequency induction heated sintering method, the rapid densification of WC-Co hard materials was accomplished using ultra fine powders with 260 nm size within 1 minute. 2) The relative density of the composite was 99.5% for the applide pressure of 60MPa and the induced current for 90% output of total capacity. 3) The grain size of WC-Co hard materials is about 260nm and the average thickness of the binder phase determined is about 11nm. The fracture toughness and the hardness of this work 12 , respectively. 4) Using pressureless sintering, we produced dense WC-Co hard materials with a relative density of 97% without applying pressure.
        70.
        2003.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        WC and dense WC-10 vol%Co materials with grain size of~1 were synthesized by high-frequency induction heated combustion synthesis (HFIHCS) method in one step from elemental powders of W, C and Co within several minutes. Simultaneous combustion synthesis and densification were accomplished under the combined effects of an induced current and mechanical pressure. In the absence of cobalt additive, WC can be formed, but its relative density was low (about 73%) under simultaneous application of a 60 MPa pressure and the induced current. However, in the presence of 10 vol.%Co, the relative density increased to 99% under the same experimental condition. The percentages of the total shrinkage occurring before and during the synthesis reaction of WC-10 vol.%Co were 5% and 51%, respectively. The fracture toughness and hardness values of WC-10 vol.%Co were 10 MPa . m and 1840 kg/, respectively.
        4,000원
        71.
        2002.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the WC-10 wt.%Co nanopowders doped by grain growth inhibiter were produced by three different methods based on the spray conversion process. Agglomerated powders with homeogenous distribution of alloying elements and with internal particles of about 100-200 nm in diameter were synthesized. The microstructural changes and sintering behavior of hardmetal compacts were compared with doping method and sintering conditions. The microstructure of hardmetals was very sensitive to doping methods of inhibitor. Nanostructured WC-Co hardmetal powder compacts containing TaC/VC doped by chemical method instead of ball-milling shown superior sintering densification, and the microstructure maintained ultrafine scale with rounded WC particles.
        4,000원
        73.
        2002.06 구독 인증기관·개인회원 무료
        공구강 등 산업용 재료로 널리 사용되는 카바이드 계 재료는 입자 크기 및 분포에 따라 기계적 성질이 변화하므로, 이를 제어하고 조절하는 기술에 관하여 많은 연구가 진행되어 왔다. 본 연구에서는 TiCN-WC-Co 복합초경계 에서 소결 공정 및 조성변화에 따른 입자 모양을 관찰하고 이에 따른 업자 성장 거동을 고찰하였다. 일반적으로 입자 조대화 양상과 고상 입자의 모양과는 밀접한 관계가 있다. 각진 입자의 경우에 는 계면이 원자적으로 singular 하여
        78.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new approach to produce nanostructured WC/Co composite powders by a mechanochemical process was made to improve the mechanical properties of advanced hardmetals. Homogeneous spherical W-Co salt powders were made by spray drying of aqueous solution from ammonium metatungstate(,AMT) and cobalt nitrate hexahydrate (Co(NO).6). spray dried W-Co salt powders were calcined for 1 hr at in atmosphere of air. The oxide powder was mixed with carbon black by ball milling and this mixture was heated with various temperatures and times in . The composite oxide powders were obtained by calcinations at . The primary particle size of W/Co composite oxide powders by SEM was 100 nm. The reduction/carburization time decreased with increasing temperatures and carbon additions. The average size of WC particle carburized at by TEM was smaller than 50 nm.
        4,000원
        79.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We combined Field-Activated Combustion Synthesis(FACS) with mechanical pressure to produce dense WC-20 vol.%Co composite in one step. The hardness, the fracture toughness and the relative density of the dense WC-20 vol.%Co were investigated. Under the application of 60 MPa pressure and 3000A current on the reactants, the relative density of WC-20 vol.%Co composite was 99.4%. The fracture toughness and hardness were and respectively. The fracture toughness and hardness of WC-20 vol.%Co composite produced by FAPACS were lower than that of nanostructured composite, but similar to commercial ones. Therefore we concluded that the FAPACS method which can produce WC-20 vol.%Co within several minutes in one step is superior to conventional ones.
        4,000원
        1 2 3 4 5