검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 117

        82.
        2001.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The conventional debinding process in metal injection molding is very long time-consuming and unfriendly environmental method. Especially, in such a case of injection molded parts from hard and fine metal powder, such as WC-Co, an extremely long period of time is necessary in the conventional slow binder removal process. On the other hand, supercritical debinding is thought to be the effective method which is appropriate to eliminate the aforementioned inconvenience in the prior art. The supercritical fluid has high diffusivity and density, it can penetrate quickly into the inside of the green metal bodies, and extract the binder. In this paper, super-critical debinding is compared with wicking debinding process. Wax-based binder system is used in this study. The binder removal rate in supercritical have been measured at , 75 in the pressure range from 20 MPa to 28 MPa. Pores and cracks in silver bodies after sintering were observed using SEM When the super-critical debinding was carried out at 75, almost all the wax (about 70 wt% of binder) was removed in 2 hours under 28 MPa and 2.5 hours under 25 MPa.
        4,000원
        89.
        1999.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of carbon content on the shape of WC grains dispersed in the Co-rich matrix during liquid phase sintering of WC-35%Co hard metals has been determined. The shape of WC grains was observed using SEM stereography after removing cobalt matrix with boiling hydrochloric acid solution. The WC grains changed from hexagonal to trigonal prism as the carbon content increased in the two-phase region of(WC + - Co), while the morphology of WC grains changed from trigonal to hexagonal shape as the carbon content decreased. The morphology of WC grains changes reversibly along with carbon loss or carbon pick-up. Morphology change of WC grains is attributed to crystal structure of WC, which has an asymmetric array of carbon atoms. There are two types of prismatic planes having different numbers of broken W-C bonds in WC grains. It is scrutinized that as the carbon content increases, the high energy prism planes grow fast and the crystals change from hexagonal to trigonal shape. On the other hand, when the carbon content decreases, the high energy prism planes are dissolved accompanying split of (100) plane into (101) and (101) planes.
        4,000원
        95.
        1999.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to investigate the manufacturing feasibility of WC-Co milling inserts via Powder Injection Molding (PIM) process. WC-Co is used in a wide variety of cutting tools due to its high hardness, stiffness, compressive strength and wear resistance properties. WC-Co parts for a high stress application were conventionally produced by the press and sinter method, which were Iimited to 2 dimensional shapes. Manufacturing WC-Co parts for a high stress application by PIM implies that tool efficiency can be highly improved due to increased freedom is design. P30 grade WC powder (WC-Co-TiC-TaC system) was mixed with RIST-5B133 binder and injection molded into milling inserts (Taegu Tech. Model WCMX 06T 308). The mean grain size of the powder was about 0.8m. Injection molded specimens were debound by solvent extraction and thermal degradation method at various conditions. The specimens were sintered at 140 for 1 hr in vacuum. Carbon content, weight loss, dimensional change, and macro defects of the specimen were carefully monitored at each stage of the PIM process. PIMed WC-Co milling inserts reached 100% full density after sinteing. Its mechanical properties and micro-structures were comparable with the press and sintered milling insert. Carbon content of the sintered WC-Co insert was mainly determained by the atmosphere of thermal debinding. By controlling powder loading and injection molding condition, dimensional accuracy could be obtained within 0.4%. We confirm that PIM can not only be an alternative manufacturing method for WC-Co parts economically but also provide a design freedom for more effieient cutting tools.
        4,000원
        96.
        1998.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructures and mechanical properties of submicron WC-Co cemented carbides were investigated in relation to cobalt content. To inhibit the WC grain growth during sintering, VC was added as a inhibitor in each alloy with 3 mass% to the cobalt content. The WC-(5, 8, 10, 15, 20) mass% Co compacts were sintered at for 30 min in vacuum. Some of WC-(5, 8, 10) mass% Co sintered compacts were HIPed with 120 atm at 130 for 1 hr. The shrinkages of all HIPed alloys were increased without depending on the cobalt contents and the sintered densities of them. The relative densities of the alloys were increased with the cobalt content and HIPing. The less the cobalt content, the larger the WC grain. Many contiguities of WC grains were found in WC-5 mass% Co alloy. The sizes and numbers of pores in the alloys were decreased by HIPing. And also the strength and the hardness of each alloy were increased. The maximum hardness was about 18.95 GPa in the WC-5 mass% Co alloy HIPed and the maximum transverse-rupture strength (T.R.S.) 3.2 GPa in the WC-20 mass% Co alloy sintered.
        4,000원
        97.
        1998.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultrafine WC-10wt.%Co cemented carbides powders were synthesized by direct carburization. W-Co composite powders and carbon black powders were mixed by wet ball milling and dried. The mixed powders were heated to 800 with heating rate of 8.2/min and held for various times in flowing . For carbon addition of 140%, the carburization was completed by heating at 80 for 4 hours. The carburization time decreased with increasing amount of carbon and carburization was completed by heating at 800 for 2 hours with carbon addition of 150%. WC-10 wt%Co cemented carbides powders fabricated by direct carburization have nanoscale WC(100 nm) size.
        4,000원
        99.
        1997.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 용사용WC-17%Co 복합분말을 분무건조법으로 제조하고 열처리 온도(850˚C, 1000˚C, 1150˚C, 1300˚C)에 따른 조립분말의 미세구조, 입도분포, 유동도, 및 결정상변화를 고찰하였다. 분무건조상태의 입형은 구형이었으며, 입도분포, 평균입자크기, 유동성은 각각 20.6-51.7μm, 27.2μm, 0.26 sec/g 이었다. 열처리에 의하여 조립분말은 치밀화되어 1300˚C 열처리 후에는 입도분포와 평균입자크기가 각 각 6.9-37.9μm과 17.8μm로 감소하였으며, 유동성은 0.12 sec/g로 향상되었다. 열처리중에 WC와 Co의 상화확산에 의하여 Co6W6C및 Co3W3C이 생성되었으며, 두 상이 나타나는 임계온도는 1150˚C이었다.
        4,000원
        1 2 3 4 5