검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        In order to promote the resource circulation and upcycling of waste refrigerators, it is necessary to analyze the material flow of recovered valuable resources and low-value residues after they are discharged. This study divided the flow of waste refrigerators into the five steps of discharge, collection, pretreatment, resource recovery, and sale/export/disposal and conducted material flow analysis (MFA) in each step. Waste refrigerators are treated via official (formal sectors, 65.6% of total amount) and unofficial (informal sectors, 34.4% of total amount) channels. Officially, waste refrigerators are collected through free collection by national and local governments, recovery by product producers and distributors, and waste collection·transportation·recycling companies and are recycled at public and private recycling centers. Unofficially, waste refrigerators are collected through junk shops and individual collectors. Waste refrigerators recycled in the formal sectors undergo pretreatment processes such as the disassembly, shredding, and separation and recovery of resources such as scrap irons, plastics, PCB (printed circuit board), cables, glasses, waste refrigerants, urethane, etc. Waste refrigerators recycled in informal sector treated through disassembly of the exterior, the shredding process by the excavators in illegal facilities and recovered waste refrigerants, plastics, glasses, scrap irons, copper, nickel silver, PCB, urethane, etc. MFA results show that in 2015, the amount of waste refrigerators collected from formal sectors reached 121,642 ton/year, the amount of recycling was 107,684 ton/year, and the amount of residues was 13,955 ton/year respectively. Thus, actual recycling rate per a waste refrigerator was estimated 88.15% in 2015. To promote the resource circulation and upcycling of waste refrigerators, it is necessary to find a way to improve the recycling of urethane, which accounts for 10.8% of the total weight of a refrigerator.
        2.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        The flow of products containing valuable metal resources after discharging to waste means that it is necessary to form a plan to improve resource circulation to enhance the circulation of metal resources. In this study, waste resource circulation flow analysis of products containing cobalt and palladium after disposal was performed by classifying five stages: (1) discharge/import, (2) collection/discarding, (3) pretreatment, (4) resource recovery, and (5) product production/export. The mobile phone was one of products which were the most generating cobalt. Discharged cobalt was kept for processing or was produced as pure cobalt, cobalt oxide, or cobalt sulfate, and was used as a raw material for locks, speakers, AlNiCo magnets, tire, batteries, etc. The total amount of cobalt in the waste products was 994 tons and the recycling rate was 53.7%, indicating that 543 ton of cobalt was recycled. Palladium was discharged from waste electrical and electronic products, precious metals, petrochemical catalysts, vehicles catalysts at the end of their life, and medical equipment (dental). The palladium recovered by pre-treatment and resource recovery was recycled as a metal resource or exported. The amount of palladium recycled was 2.412 tons, of which a total of 2.512 or 96% tons is estimated to be recycled. Future research may be necessary to suggest institutional improvements, including the waste resource classification and market expansion for the recycling in the five steps based on the results of this study.
        3.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        The materials flow of nickel was analyzed into up-stream and down-stream based on the literature survey. Dischargeand recycling stages in the down-stream were analyzed through the field survey. The waste nickel resources circulationflow were analyzed into 4 stages such as discharge·import, collection·disuse, resource recovery and product production·export, which are divided into nickel scrap and stainless steel scrap. The nickel scrap of 1,500ton was collected andrecycled and exported, which are from battery, catalyst and etc. The stainless steel scrap of 55,200ton are recycled fromdomestic and imported sources, which are 28,800ton and 26,400ton, respectively. The resource circulation rate of 45.3%is obtained from the above flow and the various plans are suggested each stage to increase resource circulation rate. Atdischarge·import stage, it is suggested this kind of waste may be classified as resources if the classification of waste isdone in detail and suitably. Also, it is suggested to apply quota tariff to this kind of waste. At collection·disuse stage, theplan of stabilizing supply and demand is suggested through the improvement of bidding system. At resource recovery stage,the fostering plan for specialized crushing companies and the win-win plan between conglomerate and medium-smallcompanies are suggested. At product production·export stage, it is suggested the integrated approval for licensing to registeras waste-treating facilities instead of exempting registration under the present condition to activate recycling industries.