검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The wind turbine blades should be designed to possess a high stiffness and should be fabricated with a light and high strength material because they serve under extreme combination of lift and drag forces, converting kinetic energy of wind into shaft work. The goal of this study is to understand the basic knowledge required to curtail the process time consumed during the construction of small wind turbine blades using carbon fiber reinforced polymer (CFRP) prepeg composites. The configuration of turbine rotor was determined using the QBlade freeware program. The fluid dynamics module simulated the loads exerted by the wind of a specific speed, and the stress analysis module predicted the distributions of equivalent von Mises stress for representing the blade structures. It was suggested to modify the shape of test specimen from ASTM D638 to decrease the variance in measured tensile strengths. Then, a series of experiments were performed to confirm that the bladder compression molded CFRP prepreg can provide sufficient strength to small wind turbine blades and decrease the cure time simultaneously.
        4,000원
        2.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An icing phenomenon of wind turbine blade are caused by wind speed, air temperature, liquid water content, droplet size, and so on. In this study, the analyses were carried out at a liquid water content of 0.20g/㎥, droplet size of 25 um, wind speed of 11.4m/s and air temperatures of -15, -10, -5℃ using NREL 5MW wind turbine. The software uses FENSAP-ICE's CFD Flow Solver, Drop 3D and ICE 3D. The analysis of icing shape and mass with temperatures according to air foil was derived, and the required heat quantity for de-icing was calculated at NACA 64618 airfoil for air temperature of -15℃. Power curves with wind velocities are suggested for economical analysis.
        4,000원
        3.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The object of research is based on 1.5 MW wind turbine blade. This paper has carried out the aerodynamic shape optimization design of wind turbine blade. Based on the aerodynamic basic theory of wind turbine blade design and combined with particle swarm optimization algorithm(PSO), the design optimization model of the aerodynamic shape of blade is established. Through this study, the optimization results of the angle inducing ′ and tangential inducing  were obtained. The calculation programs are written and calculated chord length and torsion angle of the blade used by ′ and . The calculation result for the optimized wind turbine was 1.38 MW when the wind speed was 16 m/s. The 8 % error could be considered as an engineering acceptable error and the calculated values can be proved the correctness of the design value.
        4,000원
        4.
        2017.04 구독 인증기관 무료, 개인회원 유료
        The object of research in Based on 1.5MW wind turbine blade. This paper has carried out the aerodynamic shape optimization design of wind turbine blade. Based on the aerodynamic basic theory of wind turbine blade design and combined with particle swarm optimization algorithm, the design optimization model of the aerodynamic shape of blade is established. The calculation programs are written by use of MATLAB and calculate chord length and torsion angle of the blade. Then the shape of wind turbine blade is obtained. As research we can know that the chord length is decreased after optimization design of wind turbine blade, The optimized blade not only meets the actual manufacturing requirement, but also has the largest wind energy utilization coefficient.
        4,000원
        5.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to observe the wind load characteristics around two-dimensional rotor blade of small wind turbine under high wind speed. The CFD analysis on the blade shape of NACA-4418 is performed to understand the wind load(i.e., drag and lift coefficient). In the results, the drag and lift coefficient were estimated to be 0.013, 0.44, respectively, at the wind speed 35m/s(wind speed at the height of wind tower, z=70m) and angle of attack 3°. By using the lift, drag coefficient and the appropriate assumption of the blade length, the number of blade and the tip speed ratio(TSR), the proper blade shape was obtained. On the base of this basic study, various conditions for Reynolds number and aerodynamic analysis including angle of attack according to parametric test need to study more in the future. Also assessment for the blade need to study safety on wind pressure coefficient and distribution according to wind characteristics.
        4,000원
        6.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents the structural model verification process of whole wind turbine blade including blade model which proposed in Part1 paper. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. In the Part1 of this paper, the processes of structural model development and verification process of blade only are introduced. The whole wind turbine composed by blade, rotor, nacelle and tower. Even though NREL has reported the measured values, the material properties of blade and machinery parts are not clear but should be tested. Compared with the other parts, the tower which made by steel pipe is rather simple. Since it does not need any considerations. By the help of simple eigen-value analysis, the accuracy of structural stiffness and mass value of whole wind turbine system was verified by comparing with NREL's reported value. NREL has reported the natural frequency of blade, whole turbine, turbine without blade and tower only models. According to the comparative studies, the proposed material and mass properties are within acceptable range, but need to be discussing in future studies, because our material properties of blade does not match with NREL's measured values.
        4,000원
        7.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents the structural model development and verification processes of wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. The wind turbine assembled by blades, rotor, nacelle and tower. The wind blade connected to rotor. To make the whole turbine structural model, the mass and stiffness properties of all parts should be clear and given. However the wind blade, hub, nacelle, rotor and power generating machinery parts have difficulties to define the material properties because of the composite and assembling nature of that. Nowadays to increase the power generating coefficient and cost efficiency, the highly accurate aerodynamic loading evaluating technique should be developed. The Fluid-Structure Interaction (FSI) is the emerging new way to evaluate the aerodynamic force on the rotating wind blade. To perform the FSI analysis, the fluid and structural model which are sharing the associated interface topology have to be provided. In this paper, the structural model of blade development and verifying processes have been explained for Part1. In following Part2 paper, the processes of whole turbine system will be discussing.
        4,000원
        8.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 풍력터빈 블레이드에 대한 전산유체해석(CFD)을 수행하였다. 이를 위해서 National Renewable Energy Laboratory(NREL)에서 수행하였으며, 다양한 실험 및 해석결과가 공개된 실물크기 풍력터빈 블레이드인 NREL Phase VI를 해석대상으로 하였다. 상업용 범용 전산유체해석코드인 ANSYS-CFX와 파라매트릭 3D CAD 모델을 이용하여 해석을 수행하였으며, 실험결과와 비교하여 연구결과의 타당성을 검토하였다. 다양한 난류모델에 대한 비교연구를 통하여 Shear Stress Transport(SST) k − ω 난류모델의 정확성을 검증하였으며, 유동의 비정상상태를 최소화하기 위해서 0-각도 요(yaw)각을 고려하였다. NREL Phse VI 풍력터빈 블레이드는 2개의 날개를 가졌으며, 비선형 비틀림각과 선형 테이퍼가 고려되었다. 풍력터빈 블레이드가 주축에 대해서 회전하기 때문에 상대속도는 스팬에 대해서 비선형의 관계를 가진다. 따라서 받음각(angle of attack)을 최소화하기 위해서 비선형 비틀림각이 고려되었다. 해석결과의 3차원 풍력특성을 분석하기 위해서, 각 단면의 압력계수 및 이를 적분하여 풍력계수(수직, 접선, 추력, 회전력)를 계산하였다. 풍력터빈 블레이드의 회전속도는 72 RPM으로 고정한 상태에서 다양한 풍속(5m/s, 7m/s, 10m/s, 13m/s, 15m/s, 20m/s, 25m/s) 상태를 해석하였다. 해석결과와 풍동실험결과는 모든 풍속에 대해서 근사한 수치를 나타냈으며, 높은 풍속에서의 풍하면 박리현상에 대한 정확한 유동특성을 해석할 수 있었다.
        4,000원
        9.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lay outs in this thesis is based on basic theories and the test the performance of the product by wind tunnel test and vehicle test. Furthermore, in order to find out the effect of structure change on hub which is one of the components of wind turbine, I compared the actual performance between the existing model and the modified model thoroughly. To improve the performance of wind turbine, I modify the structure of the hub and analysing base model and modify model by using Star-CCM+. As a result, I found out the wing-shaped hub used model stablizes the spin in shorter time than existing model. Therefore, with the optimal blade selection, the structure modification on hub is a considerable variable on wind turbine design which is aiming better performance.
        4,000원
        10.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 바람의 방향이 시시각각 변하고 바람의 세기가 해양이나 고지대에 비하여 낮은 도심지역에 적합한 수직축 고효율 풍력발전시스템에 적용할 블레이드의 형상제안 및 정지기동특성에 대한 이차원해석을 하였다. 해석에 사용된 블레이드 형태는 NACA airfoil(NACA 2312)을 기본으로 하고, 변형된 모델들에 대해 조사하였다. 그 결과 일반적으로 풍속이 증가함에 따라서 토크 값은 지수함수의 형태와 유사하게 증가함을 알 수 있었다. 또한 6케이스 중 플랩이 없는 블레이드 2 타입이 가장 높은 토크값을 나타내었으며, 블레이드 1 타입의 경우는 30° 플랩을 부착한 경우가 가장 우수하였다.
        4,000원
        11.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 풍력발전에 적용되는 이론 분석을 통해 공력해석 프로그램을 개발하였으며, 풍동실험 결과와 비교 분석을 통해 정확성을 검증하였다. 그 결과로 개발한 계산 프로그램의 정확성과 유용성이 입증되어, 앞으로 새로운 풍차 익형 개발에 활용하고자 한다.
        4,000원
        13.
        2011.01 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 효과적인 풍력발전기 블레이드의 상태 모니터링을 위하여 대표적 손상형태 중 하나인 로터의 질량 불균형으로 인한 이상상태를 감지할 수 있는 기법을 제안하였다. 이를 위하여 수평축 3-블레이드 풍력발전기를 대상으로, 블레이드 1개의 질량을 증가시키면서 로터의 질량 불균형 조건을 구현한 후 전체 풍력발전기에 대한 동력학 시뮬레이션을 수행하였다. 질량불균형이 발생하면 부가질량에 의한 원심력에 의하여 나셀의 로터 회전축에 대한 횡방향 진동이 발생하고, 부가 질량의 크기가커질수록 나셀 횡방향 진동의 진폭이 거의 선형적으로 증가함을 알 수 있었다.