검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The small yellow croaker (Larimichthys polyactis) is one of the representative high-class fish species in Korea. The catch of small yellow croaker in adjacent water fisheries has been continuously decreasing from 59,226 tons in 2011 to 19,271 tons in 2016. The small yellow croaker is caught by gillnet, stow net and bottom trawl, among which about 55~65% is caught by gillnet. For the sustainable use of small yellow croaker, the fishing power of small yellow croaker drift gillnet is very important. Therefore, the change of fishing power index were analyzed to identify the development of the vessel and gear technology that may have improved the fishing efficiency of the small yellow croaker drift gillnet fishery from 1960s to 2010s. Gross tonnage and horse power per fishing vessel was increased annually. The mesh size was 75.0 mm in the 1960s, but reduced to 60.6 mm in the 1980s and to 51.0 mm in the 2000s. In the 1960s, it was hauled out by manpower. However, the net hauler were modernized and supply rate was also increased since 1970. Due to the mechanization of the net hauler, the number (length) of used net gradually increased from 1.5 km in the 1960s to 7.5 km in the mid-1980s and to 15 km in 2010. Colour fish finders and positioning system were introduced and utilized from the mid-1980s. Surveys on the supply and upgrading of fishing equipment utilized visiting research. Therefore, the relative fishing power index in the small yellow croaker drift gillnet fishery increased from 1.0 in 1980 to 0.8 in 1970, to 1.1 in 1990, to 1.6 in 2000 and to 1.9 in 2010. The results are expected to contribute to reasonable fisheries stock management of the small yellow croaker drift gillnet fishery.
        4,000원
        3.
        2013.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Estimations on population ecological parameters of the small yellow croaker, Larimichthy polyactis in Korean waters, were calculated using catch data based on coastal and offshore drift gillnet fishery and biological data from 2010 to 2012. The population ecological parameters included survival rate, instantaneous coefficient of natural and fishing mortality and age/length at first capture. The survival rate (S) of the small yellow croaker was estimated to be 0.20 from catch curve method. The instantaneous coefficient of natural mortality (M) was estimated to be 0.46/year with Alverson and Carney method. The instantaneous coefficient of total mortality (Z) was 1.611/year, used to be transformed the survival rate and the instantaneous coefficient of fishing mortality (F) were 1.153/year. The length at first capture (Lc) was 19.1cm by Pauly method, and the age at first capture (tc) was 1.303 years of the small yellow croaker by the coastal and offshore drift gillnet fishery.
        4,000원
        4.
        2012.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For rebuilding and managing fish stocks and fisheries, the biological and socioeconomic evaluations on fisheries management regulations are important. This study aimed to estimate the economic effectiveness of different mesh sizes in the yellow croaker gillnet fishery. In particular, by comparing economic effects of mesh sizes, 50mm and 52mm, it aimed to provide the economic validity for increasing mesh sizes. Analytical results showed that the fishing revenue was higher in the vessels using a mesh size over 52mm than that in the vessels using a mesh size less than 50mm. In addition, the effect of fishing cost reduction was also larger in the vessels using a mesh size over 52mm than that in the vessels using a mesh size less than 50mm.
        4,000원
        5.
        2010.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper was concentrated on the distribution and the composition of lost fishing gear on the sea bed around yellow croaker fishing ground in the near sea of Jeju, Korea from April to October 2009 in order to improve the fishery environment. Recovering lost fishing gears was carried out total 10 times with a trawlnet along the isobath. As the result, it seems reasonable to conclude that the amount of lost fishing gear has a deep connection with the dip of the sea bed as well as the fishing gear scale, fishing ground and so on. The amount of recovered lost fishing gears were in order of gillnets, dragged gears, traps and ropes. In particular, traps were recovered almost every time within the survey area.
        4,000원