검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is about the control method of smart skin applying SPD(Suspended Particles Display). Smart skin is a self-developed composite window system for the purpose of reducing the cooling load and lighting load. The simulation by TRNSYS18 was modeled in detail based on an actual office located in Jeonju. The previously studied smart skin control method (case1) is a time-dependent control method, and a new control method (case2) was devised based on the data that consideration of daily insolation is important in an actual environment. As a result of simulation by case1, it was found that the amount of cooling energy and lighting energy saved was reduced by 15.1% and 39.2%, respectively, compared to the general model. As a result of the simulation by case2, it was found that the amount of cooling energy and lighting energy saved was reduced to 17.6% and 57.5%, respectively, compared to the general model. Therefore, the newly proposed control method considering the amount of insolation and time was found to be effective in reducing cooling energy and lighting energy.
        4,000원
        2.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an algorithm for control of SPD(Suspended Particles Display) on Smart Skin was proposed. The office with SPD located in Jeonju, Jeollabuk-do was modeled and simulated using TRNSYS18. Through simulation, the energy and lighting consumption of building were analyzed The two kinds of control algorithm(SPD and dimming control method for cool energy and lighting energy saving(CASE 1) and improved control method(CASE 2)) were compared. For this research, Two models(with and without SPD and dimming control) were analyzed by comparing the cooling energy and the light energy consumption was reduced 15.1%, and the lightind energy consumption was reduced by 39.2% more than the model without SPD and dimming control. But, at the improved control method(CASE 2) the cooling energy consumption was reduced of more 2.5% and lighting energy consumptions was reduced of more 18.3% than CASE 1. When using SPD and dimming control, lighting energy consumptions showed more sensitive to solar radiation than cooling energy consumptions. As the improved control method(CASE 2) showed more advantageous saving tate than SPD and dimming control metrhod for cool energy and lighting energy saving(CASE 1), it was found that the improved control method (CASE 2) must be utilized in practice for SPD and dimming control.
        4,000원