검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 190

        61.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 음료나 술의 원료로 이용한 뒤 버려지는 고창산 복분자 부산물을 활용한 흑돈(K-berkshire) 단미사료화 소재 개발에 관한 연구이다. 복분자 부산물의 사료화를 위해 복분자 원물 및 부산물(즙박 및 주정박)의 추출물을 이용하여 총폴리페놀, 플라보노이드, 안토시아닌의 함량과 더불어 ABTS와 항균능을 확인하였다. 각 부산물에 대한 일반성분과 함께 섬유질 함량과 칼로리를 분석하였고, 또한 무기질 및 유해독소(mycotoxin)의 함량을 측정하였다. 부산물 추출물 내 아미노산 조성과 더불어 품질 표준화 를 위한 지표물질(ellagic acid), 수분활성도(aW)와 pH를 측정하였으며, 이후, 복분자즙 부산물을 총 6 주간 급이한 K-berkshire의 소장 내 미생물(총균, 대장균군, 대장균, 유산균)의 변화를 조사하였다. 그 결과, 복분자 원물과 비교했을 때 복분자 부산물에서 총폴리페놀을 포함하여 플라보노이드와 안토시아 닌의 함량이 높았으며, 항산화와 더불어 항균성에서도 높은 활성을 나타내었다. 복분자즙과 복분자주 부산물은 사료적 특성에서 큰 차이가 없었으며, 또한 aflatoxin과 ochratoxin 같은 곰팡이 독소는 허용 기준 이하로 확인되었다. 그러나, 복분자즙 부산물의 경우에는 수분활성도(aW)와 pH 변화의 폭이 적었 다. 따라서, 복분자즙 부산물 0.5%를 사료에 첨가하여 K-berkshire에 급이 하였을 때 흑돈 소장 내 유 해균의 수는 감소하였고, 유익균의 수에는 영향을 미치지 않았다. 또한 복분자 부산물은 원물과 비교했 을 때 다량의 항산화 성분을 비롯하여 미네랄과 아미노산을 함유하고 있어 높은 항균활성을 나타내는 것으로 생각되며 이로 인해 K-berkshire에 복분자 부산물을 사료 첨가제로 급이 했을 때 소장 내 유해 세균의 감소를 나타내는 것으로 판단한다. 따라서, 복분자 부산물은 K-berkshire에 영양학적으로도 가 치가 있으면서도 장내 미생물 군 조절에 탁월한 사료 첨가제로의 활용이 가능할 것으로 판단된다.
        4,500원
        63.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SiAlON ceramics are used as ceramic cutting tools for heat-resistant super alloys (HRSAs) due to their excellent fracture toughness and thermal properties. They are manufactured from nitride and oxide raw materials. Mixtures of nitrides and oxides are densified via liquid phase sintering by using gas pressure sintering. Rare earth oxides, when used as sintering additives, affect the color and mechanical properties of SiAlON. Moreover, these sintering additives influence the cutting performance. In this study, we have prepared Ybm/3Si12-(m+n)Alm+nOnN16-n (m = 0.5; n = 0.5, 1.0) ceramics and manufactured SiAlON ceramics, which resulted in different colors. In addition, the characteristics of the sintered SiAlON ceramics such as fracture toughness and microstructure have been investigated and results of the cutting test have been analyzed.
        4,000원
        65.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Additive manufacturing (AM) is a highly innovative method for joining dissimilar materials for industrial applications. In the present work, AM of STS630 and Ti-6Al-4V powder alloys on medium entropy alloys (MEAs) NiCrCo and NiCrCoMn is studied. The STS630 and Ti64 powders are deposited on the MEAs. Joint delamination and cracks are observed after the deposition of Ti64 on the MEAs, whereas the deposition of STS630 on the MEAs is successful, without any cracks and joint delamination. The microstructure around the fusion zone interface is characterized by scanning electron microscopy and X-ray diffraction. Intermetallic compounds are formed at the interfacial regions of MEA-Ti64 samples. In addition, Vicker’s hardness value increased dramatically at the joint interface between MEAs and Ti-6Al-4V compared to that between MEAs and STS630. This result is attributed to the brittle nature of the joint, which can lead to a decrease in the joint strength.
        4,000원
        66.
        2019.04 구독 인증기관·개인회원 무료
        This study was conducted to evaluate the efficacy of mulberry leaf mixed diet on larval growth of Protaetia brevitarsis. As a result of adding mulberry leaves to oak fermented sawdust, the survival rate of P. brevitarsis larvae were higher than those of the control when mass rearing larvae. When fed oak fermented sawdust with 5%, 10% and 20% of mulberry leaves, the cumulative proportion of larvae over 2.5g was 93.1% at 65 days, 95.6% at 55 days, and 93.9% at 55 days after rearing at 25±1℃, respectively. Also, heavy metals were not detected in larvae of P. brevitarsis fed on mulberry leaves.
        67.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of the content of MgO-CaO-Al2O3-SiO2 (MCAS) glass additives on the properties of AlN ceramics is investigated. Dilatometric analysis and isothermal sintering for AlN compacts with MCAS contents varying between 5 and 20 wt% are carried out at temperatures ranging up to 1600℃. The results showed that the shrinkage of the AlN specimens increases with increasing MCAS content, and that full densification can be obtained irrespective of the MCAS content. Moreover, properties of the AlN-MCAS specimens such as microhardness, thermal conductivity, dielectric constant, and dielectric loss are analyzed. Microhardness and thermal conductivity decrease with increasing MCAS content. An acceptable candidate for AlN application is obtained: an AlN-MCAS composite with a thermal conductivity over 70 W/m·K and a dielectric loss tangent (tan δ) below 0.6 × 10−3, with up to 10 wt% MCAS content.
        4,000원
        68.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/ s and a layer thickness of 25 μm. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4%, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.
        4,000원
        70.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, MgO–CaO–Al2O3–SiO2 (MCAS) nanocomposite glass powder having a mean particle size of 50 nm and a specific surface area of 40 m2/g is used as a sintering additive for AlN ceramics. Densification behaviors and thermal properties of AlN with 5 wt% MCAS nano-glass additive are investigated. Dilatometric analysis and isothermal sintering of AlN-5wt% MCAS compact demonstrates that the shrinkage of the AlN specimen increases significantly above 1,300oC via liquid phase sintering of MCAS additive, and complete densification could be achieved after sintering at 1,600oC, which is a reduction in sintering temperature by 200oC compared to conventional AlN-Y2O3 systems. The MCAS glass phase is satisfactorily distributed between AlN particles after sintering at 1,600oC, existing as an amorphous secondary phase. The AlN specimen attained a thermal conductivity of 82.6 W/m·K at 1,600oC.
        4,000원
        71.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A conductive additive is prepared by dispersing multi-walled carbon nanotubes (MWCNTs) on Cu powder by mechanical milling and is distributed in epoxy to enhance its electrical conductivity. During milling, the MWCNTs are dispersed and partially embedded on the surface of the Cu powder to provide electrically conductive pathways within the epoxy-based composite. The degree of dispersion of the MWCNTs is controlled by varying the milling medium and the milling time. The MWCNTs are found to be more homogeneously dispersed when solvents (particularly, non-polar solvent, i.e., NMP) are used. MWCNTs gradually disperse on the surface of Cu powder because of the plastic deformation of the ductile Cu powder. However, long-time milling is found to destroy the molecular structure of MWCNTs, instead of effectively dispersing the MWCNTs more uniformly. Thus, the epoxy composite film fabricated in this study exhibits a higher electrical conductivity than 1.1 S/cm.
        4,000원
        72.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study aimed to prepare a novel efficient flame retardant additive for polypropylene. The new flame retardant was prepared by chemical grafting of melamine to graphene oxide with the aid of thionyl chloride. Fourier-transform infrared spectroscopy and thermogravimetric analysis proved that melamine had been successfully grafted to the graphene oxide. The modified graphene oxide was incorporated into polypropylene via solution mixing followed by anti-solvent precipitatio. Homogeneous distribution as well as exfoliation of the nanoplatelets in the polymer matrix was observed using transmission electron microscopy. Thermogravimetric analysis showed a significant improvement in the thermo-oxidative stability of the polymer after incorporating 2 wt% of the modified graphene oxide. The modified graphene oxide also enhanced the limiting oxygen index of the polymer. However, the amount of improvement was not enough for the polymer to be ranked as a self-extinguishing material. Cone calorimetry showed that incorporating 2 wt% of the modified graphene oxide lowered total heat release and the average production rate of carbon monoxide during burning of the polymer by as much as 40 and 35%, respectively. Hence, it was concluded that the new flame retardant can retard burning of the polymer efficiently and profoundly reduce suffocation risk of exposure to burning polymer byproducts.
        4,000원
        73.
        2018.05 구독 인증기관·개인회원 무료
        The anion exchange membrane fuel cells (AEMFCs) have been known to be promising eco-friendly power sources. To develop AEMFCs, the high ion conductivity, good dimensional, mechanical and alkaline stabilities are required for AEMs. However, the high conductivity generally requires high water uptake, which causes an enhanced swelling and decreased mechanical properties for the AEMs. To overcome this problem, we introduced an ionic conductor having long alkyl diammonium groups to alkyl-substituted poly(p-phenylene oxide) (PPO). Addition of this new additive increased the conductivity, mechanical and alkaline stabilities due to the molecular interaction between alkyl chains in PPO and same group of the additive. Synthesis and properties of the corresponding membranes will be discussed in detail.
        74.
        2018.04 구독 인증기관·개인회원 무료
        Different strategies are studied to incorporate lipid-soluble bioactive molecules into water-based food systems. However, these systems solely cannot protect the core compound through the storage period, especially when the core is exposed to environmental stress factors. Water soluble fraction of the crude extract from Enteromorpha prolifera was analyzed for its physicochemical characteristics including chemical composition, structure, rheological and thermal properties. The extract was added to O/W emulsion system containing retinol and stabilized with Tween 20, WPI and sodium caseinate to improve storage stability through different modes of action; as a chelator of metal ions and as a scavenger of radicals. Storage stability was mainly determined by zeta potential, particle size distribution, and retinol retention. The water-soluble extract of E.prolifera mainly consisted of anionic polysaccharide, while impurities of protein, mineral and other pigments were present. Mode of action analysis showed that the extracts had both ferrous ion chelating ability(EC50=0.67%) and free radical scavenging ability(EC50=0.23%), indicating a multifunctioning mechanism of the heterogeneous extract. Addition of extract (0.1%~1% in total emulsion) did not affect the physical stability during 1 week storage. Protective materials are often added to food systems to improve the stability of core materials but excessive use of additives may be repulsive to consumers. In contrast, the optimum concentration range of E.prolifera extract is much lower compared to that of conventional usage of other materials and has lower toxicity to that of strong chelators while providing effective protection.
        75.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An electroless deposition method was used to modify the surface properties of rice husk ceramic particles (RHC) by depositing nano-nickel on the surface of the RHC (Ni-RHC). The dry tribological performances of aluminum matrix composite adobes containing different contents of RHC and Ni-RHC particles have been investigated using a micro-tribometer. Results showed that the Ni–RHC particles substantially improved both the friction and wear properties of the Ni-RHC/aluminum matrix adobes. The optimal concentration was determined to be 15 wt% for both the RHC and Ni–RHC particles. The improvements in the tribological properties of aluminum adobes including the Ni-RHC were ascribed to frictioninduced peeling off of Ni coating and formation of protection layer on the wear zone, both of which led to low friction and wear volume.
        4,000원
        76.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to estimate the optimum content of an inorganic additive for cold-recycled asphalt mixtures and evaluate its performance. METHODS: An indirect tensile test, a tensile-strength ratio test, and an indirect tensile-fatigue test were conducted on cold-recycling asphalt mixtures with various additives. RESULTS: The laboratory performance tests indicated that granulated blast-furnace slag mixed with inorganic and cement activators provided optimum performance. The performance results of the cold-recycled asphalt pavement were similar to the inorganic and cement activators’ performance in terms of the indirect tensile strength, tensile strength ratio, and indirect tensile-fatigue test. CONCLUSIONS : Overall, the performance of a cold-recycled asphalt mixture using inorganic additives and emulsion asphalt was comparable to a warm-recycled asphalt mixture. However, more experiments aimed at improving its performance and studying the effect of the inorganic additives must be conducted.
        4,000원
        78.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A three-dimensional physical part can be fabricated from a three-dimensional digital model in a layer-wise manner via additive manufacturing (AM) technology, which is different from the conventional subtractive manufacturing technology. Numerous studies have been conducted to take advantage of the AM opportunities to penetrate bespoke custom product markets, functional engineering part markets, volatile low-volume markets, and spare part markets. Nevertheless, materials issues, machines issues, product issues, and qualification/certification issues still prevent the AM technology from being extensively adopted in industries. The present study briefly reviews the standard classification, technological structures, industrial applications, technological advances, and qualification/certification activities of the AM technology. The economics, productivity, quality, and reliability of the AM technology should be further improved to pass through the technology adoption lifecycle of innovation technology. The AM technology is continuously evolving through the introduction of PM materials, hybridization of AM and conventional manufacturing technologies, adoption of process diagnostics and control systems, and enhanced standardization of the whole lifecycle qualification and certification methodology.
        4,600원
        79.
        2017.11 구독 인증기관·개인회원 무료
        Amine functionalized polysulfone (PSf) based ultrafiltration (UF) membranes were prepared by non-solvent induction phase separation method (NIPS) with reactive PSf (matrix) and polyehtyleneimine (PEI) (additive), where PEI was reacted in dope solution to give surface modified PSf-UF membrane. Unreacted PEI might be worked as a forming agent during NIPS, however it was not much affected to the pore structures. Obtained membranes showed enhanced hydrophilic property on the membrane, which increased the water flux without loss of the rejection rate of PEO (100 K).
        1 2 3 4 5