검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 44

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Air blower has been widely used in many industrial fields such as wind tunnel and large ventilation systems. Its performance is affected by operating conditions and system geometry of inpeller and duct, and these design parameter optimization is essential for the effective development. CFD analysis is carried out to investigate the air flow field characteristics with outlet total pressure in a blower system. Intake air into the impeller blade through the inlet is compressed, and then gradually discharged from the outlet with ascending total pressure, and predicted results are compared with test data. Especially this overall pressure difference in the blower system severely depends on the flow rate. These results are expected to be used as applicable design data for blower performance improvement.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Passengers on public buses operating in the metropolitan area are exposed to the closed indoor air for minutes to hours. The indoor air quality of buses is mostly controlled through ceiling-mounted ventilation and filtration devices. A simulation study using a commercial code was conducted for fluid flow analysis to evaluate the potential effectiveness of an air purifier that can be inserted into bus windows to supply clean air from the outside to the inside. As a result of field measurements, the average CO2 concentration inside the bus during morning and evening rush hours ranged from 2,106±309 ppm to 3,308 ± 255 ppm depending on the number of passengers on board. This exceeded the Guideline for Public Transportation. The optimal installation position of an air purifier appeared to be the front side of the bus. In fact, even a low diffusing flow velocity of 0.5m/s was effective enough to maintain a low concentration of CO2 throughout the indoor space. Based on numerical analysis predictions with 45 passengers on board, the maximum CO2 concentration in the breathing zone was 2,203 ppm with the operation of an air purifier.
        4,200원
        4.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The following results were obtained by conducting a flow experiment. The experiment with air volume showed that the ducts with 3 shapes in the same cross-sectional area were large in the order of circular duct, square duct, and flexible duct. As a result of measuring the pressure value by duct shape to determine the cause of the difference between the flow rate and the air volume value by duct, the negative pressure was large in the order of circular duct, square duct, and flexible duct. in the countercurrent test, In the case of circular ducts, the deviation was high, In the case of Flexible ducts, the mild increase in the countercurrent is judged to be the difference in pressure and friction received by shape.
        4,000원
        5.
        2023.05 구독 인증기관·개인회원 무료
        In this paper, a basic study was conducted to observe the temperature inside the tube according to the heating temperature of the tube furnace. In a tube furnace, a tube is inserted, and the air space outside the tube is heated to increase the temperature of the gas inside the tube through conduction of the tube. Tube furnaces are widely used in research to capture volatile nuclides. In this case, a volatile nuclide capturing filter is inserted inside the tube, and an appropriate temperature is required to capture it. Since the tube furnace heats the air space outside the tube to the target temperature, a difference from the temperature inside the tube occurs. In particular, if a flow of gas occurs inside the tube, a larger temperature difference may occur. In order to confirm this temperature difference, an experimental device was constructed, and basic data was produced through several experiments. The following studies were conducted to produce data. First, the temperature of the air layer of the heating unit and the temperature inside the tube were measured in real time in the absence of gas flow inside the tube. Second, the temperature of the air layer of the heating unit and the temperature inside the tube were measured in real time while air having a certain temperature was flowing inside the tube. As a result of the experiment, when there is no flow inside the tube, when the heating target temperature is low, the temperature inside the tube is significantly lower than the target temperature, and when the target temperature is high, the temperature inside the tube approaches the target temperature. It was found that when there is about 20°C air flow inside the tube, the temperature inside the tube is significantly lowered even if the heating target temperature is high. In the future, additional research on changing the temperature of the gas flowing inside the tube will be conducted, and the results of this study are expected to greatly contribute to the design of a tube furnace that captures volatile nuclides.
        6.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, numerical simulations were conducted to secure both flow distribution and uniform flow discharge through a wall mount type air sterilizer. In order to increase the reliability of the simulation results where there is no well-known validation case for air sterilizer, mesh sensitivity study was performed under the constraint that y+ set to one for k-w SST turbulent modeling for both the air sterilizer and the fan. The installation of various guides and structures was reviewed in the point of flow distribution and pressure drop inside the sterilizer, and the exhaust pressure conditions were predicted to secure uniform flow discharge at outlets. This study has been done based on the computational analysis during the development stage of the air sterilizer, and the results will be verified through physical testing after production of prototype.
        4,000원
        7.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the cooling performance change according to the arrangement of the fin-tube heat exchanger using a single tube and the cooling performance change according to the air flow rate were studied. The arrangement of basic heat exchanger was set to 4 columns and 4 rows, and the performance change was studied while changing the columns and rows. In addition, the performance change was investigated by changing the air flow rate of the basic heat exchanger.
        4,500원
        8.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        구조물 환기성능 평가에서 기존 사용된 환기 지표 (ACH: Air Change per Hour)는 유체가 거동하는 구조물 내 유량의 흡·배기량과 전체 볼륨에 의해 결정된다. 이는 구조물 내 유체 유동 중 국부적으로 정체된 흐름을 평가하는 지표로 사용하기 부적합하다. 본 논문에서는 구조물에서 국부적으로 정체된 흐름을 정량적으로 나타내기 위해 역류량을 이용하여 새로운 지표 (κ: 역류량 지수)를 제안 하고, 구조형상 변수에 의해 국부적으로 정체된 유체 흐름을 평가한다. 유체 흐름 영향인자로 구조형상 변수는 공극비 (ρ), 공극 개수 (N)로 선정한다. 전산 유체 역학 (CFD)에 의한 해석 결과, 구조형상 변수에 의한 자연 환기 성능은 유사하지만, 공극의 유무에 의한 국부 정체 기류의 크기에는 차이가 발생함이 나타난다. 또한, 역류량 지수는 구조형상 변수 각각 감소함에 따라 값이 증가하는 경향이 나타난다. 본 결과를 바탕으로 회귀분석을 통해 공극비과 공극 개수 변수에 의한 역류량과 역류량 지수의 근사값이 제시된다.
        4,000원
        10.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerical analysis has been carried out to investigate the flow field characteristics for exhaust gas in automobile engine DPF system. The DPF system performance is largely affected by exhaust gas flow while it passes through the complicated geometry of DOC/DPF system, fan shape structure, and perforated can with air for fuel combustion. Hence the characteristics of fluid velocity, pressure, and streamline are analyzed with velocity uniformity in front of DOC and swirl flow near the fan. It can be seen that the velocity uniformity increases with the gas flow rate including flow acceleration near the lower area of the fan. The air flow also influences the gas flow distribution close to the impeller and fan structure with complicated swirl flow. These results are expected to be applicable as fundamental design data for automobile engine exhaust system.
        4,000원
        11.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of the change in air inflow velocity has been investigated at the opening of the malodor emission source to determine its influence on the Complex odor concentration. Both the Complex odor collection efficiency and concentrations were measured according to the change in airflow velocity. When the air inflow velocity was 0.1 m/s, it was observed that some of the generated gas streams were diffused to the outside due to low collection efficiency. In contrast, only the increased gas collection volume up to 0.5 m/s showed no substantial reduction of the Complex odor concentration, which indicates an increase in the size of the local exhaust system as well as the operation cost for the Complex odor control device. When the air inflow velocity reached 0.3 m/s, the Complex odor concentrations not only were the lowest, but the odorous gas could also be collected efficiently. The air inflow velocity at the opening of the malodor emission source was considered the key factor in determining the gas collection volume. Therefore, based on the results of this study, an optimal air inflow velocity might be suggestive to be 0.3 m/s.
        4,000원
        12.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the uniformity of the horizontal velocity and the temperature of each zone were investigated by computerized analysis method to divide the drying room into three multi - rooms to ensure the uniformity of flow inside the forced convection hot air dryer. The internal structure of the drying room of the dryer was modeled using Solidworks. In order to control the flow of hot air circulating in the drying chamber, the possibility of controlling the horizontal flow inside the drying room was verified by using a perforated plate, a guide vane, and a vertical plate. From the results of the flow visualization in the drying room, it was understood that the internal flows of the dryer models 1, 2 and 3 change from ununiform flow to uniform flow. From the analysis of velocity and temperature fluctuation, the results of the analysis of the dryer model 3 satisfied the design conditions.
        4,000원
        13.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research proposes an optimal flushing operation technique in an effort to prevent secondary water pollutions and accidents in aged pipes, and to improve the cleaning effect of unidirectional flushing. Water flow directions were analyzed using EPANET 2.0, while flushing and air scouring experiments in forward and reverse directions were performed in the field. In 42 experiments, average residual chlorine concentration and turbidity were improved after cleaning compared to before cleaning. It was found that even when the same cleaning method was used, further improvement of cleaning effect was possible by applying air injection and reverse direction cleaning techniques. By means of one-way ANOVA(Analysis of variance), it was also possible to statistically verify the need of actively utilizing air injection and reverse direction cleaning. Based on correlation between turbidity and TSS, the total amount of suspended solids removal was estimated for 874 flushing operations and 194 air scouring operations. The result showed that air scouring used more discharge water than flushing by an average of 4.9 m3 yet with larger amounts of suspended solids removal by an average of 145.9 g. The result of analysis on turbidity values from 887 flushing operations showed low cleaning effect of unidirectional flushing for the pipes with diameters over 300 mm. In addition, the turbidity values measured during cleaning showed an increasing tendency as pipe age increased. The methodology and results of this research are expected to contribute to the efficient maintenance and improvement of water quality in water distribution networks. Follow-up research involving the measurement of water quality at regular time intervals during cleaning would allow a more accurate comparison of discharge water quality characteristics and cleaning effects between different cleaning methods. To this end, it is considered necessary to develop a standardized manual that can be used in the field and to provide relevant trainings.
        4,600원
        14.
        2019.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to 9.6oC depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to 0.49 min-1. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of 3.2oC and a maximum ventilation rate of 0.49 min-1.
        4,000원
        16.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this theoretical study, a design and performance analysis theory of a micro flowrate and high pressure air-compressor is developed. The governing equations are from the gas state equation and fluid dynamic theories because the working fluid in the air compressor is in a gas phase. A case study was conducted to design a reciprocating type of air compressor which the target performance was 0.6liter/min in the volume flowrate with 5atg in air pressure at 1,600rpm rotational speed. Geometrical size of the model air compressor designed is 10mm in stroke, 20mm in bore with 4.79 compression ratio. From the performance analysis of the model compressor, it was found that the air volume flowrate produced was 0.6liter/min with 5.81atg in pressure. The design theory of a micro-size high-pressure air compressor developed in this study is expected to be very useful design tools in NANO technology industry.
        4,000원
        17.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the characteristics of the heat flow on SA(supply air) side of the white smoke reducing heat exchange system according to the change of SA velocity were analyzed in the winter condition (outside temperature 0℃). Also, the mixing process of SA and the EA(exhaust air) is presented in the psychrometric chart to confirm the possibility of reducing white smoke. Solidworks flow simulation was used to analyze the heat flow on the heat exchange system under uniform conditions. As the inflow velocity of SA increased, the temperature of SA decreased due to the convective heat transfer improvement due to the active flow in SA system. And the outlet temperature and absolute humidity of the mixing zone decreased significantly. At SA velocity 7 m/s, the outlet temperature and absolute humidity decreased to about 58% and 82%, respectively.
        4,000원
        18.
        2019.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using virtual reality technology, users can learn and experience many interactions in virtual space like the actual physical space. This study was conducted to develop air flow simulator that allows farmers and consultants to consult air flow through VR devices by creating a greenhouse or pigpen model. It can help educate farmers about the importance of ventilation effects for agricultural facilities. We proposed CFD visualization system by building a virtual reality environment and constructing database of CFD and structure of agricultural facilities. After consultants can set up situations according to environmental conditions, the users experience the visualized air flow of agricultural facility according to the ventilation effects. Also it can provide a quantified environmental distribution in the agricultural facility. Currently, the CFD data in agricultural facilities are established during winter and summer. In order to experience various environmental conditions in the developed system, The experts need to run CFD data under various environmental conditions and register them in the system requirements.
        4,300원
        19.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluid motion within the internal combustion engine cylinder plays a major role in controlling the fuel/air mixing and combustion processes in spark-ignition engines, and the combustion processes in compressionignition engines. In-cylinder flow is quite unstable and varies from one cycle to another. Various methods of in-cylinder flow measurement and fuel/air mixing characterization have been developed during the past few decades. In particular, laser based flow diagnostic techniques have been utilized for this purpose. This study will focus on the quantification of spark-ignition engine in-cylinder flow using the laser based flow diagnostic techniques. The measurement methods, including high speed flow visualization and laser Doppler velocimetry (LDV), will be discussed.
        4,000원
        20.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An AVL research engine, type 520, is modified to adapt to the 3.5L four-valve SI engine. With these given engine configurations, a test rig is constructed which allows easy changing of the different pistons and engine heads with a motoring capacity up to 3500 rpm. Nearly complete optical access to the inside of the cylinder is obtained by installing a transparent quartz cylinder on an AVL single cylinder engine. To avoid lubrication and to minimize scratches in the quartz cylinder the piston rings are made of Rulon-LD. With this experimental engine, researches for the in-cylinder flow characteristics by changing the induction system have been carried out using the laser based flow diagnostic techniques. In accordance with the previous result, it is evident that larger sized particles would be required in order to observe the flow characteristics of interest. The flow visualization taken with microballoon particles shows significant improvement. This provide detailed information.
        4,000원
        1 2 3