검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 186

        61.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 10년 이상 과채류를 재배하여 뿌리혹선충 피해가 많이 발생되었던 시설재배 토양에서 친환경적인 뿌리혹선충방제를 위하여 밀기울 토양환원처리 효과를 구명하였다. 토양소독처리후 뿌리혹선충의 밀도를 조사한 결과 시험전과 비교하여 모든 처리구에서 뿌리혹선충밀도가 감소하는 경향을 보였지만 특히 밀기울처리구에서는 높은 방제효과를 보였다. 처리후 90일경에도 밀기울처리구가 매우 낮게 유지되었으며 멜론의 생육도 가장 양호하였다. 수확기 멜론의 고사율을 조사한 결과 무처리구 65%인데 비해 밀기울처리구, 3%로 현저히 낮았으며 과실의 크기와 품질도 밀기울처리구가 우수하였다. 따라서 밀기울 토양환원처리는 뿌리혹선충 발생포장에 농약을 사용하지 않고 멜론을 1작기 동안 안전하게 재배할 수 있는 유망한 소독방법일 뿐만 아니라 멜론의 품질을 개선하는데 매우 효과적인 방법으로 생각되었다.
        4,000원
        62.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        휘발성 지방산의 생성 및 회수를 위한 분리막의 유효성을 실험적으로 검토한 결과, 분리막의 적용에 의해 발효조 내의 부유고형물 농도, 유기산 생성균수 및 유기산 농도가 증가하였다. 혐기성 발효액의 고액분리 및 발효 효율향상을 위한 분리막의 적용은 발효조 내의 관련 미생물 농도를 증가시키고 따라서 분리막을 적용하지 않은 경우에 비해 유기산 생성효율이 훨씬 증가하였다. 분리막이 결합된 산 발효조의 적용은 유기성 슬러지로부터 휘발성 지방산의 회수 효율증대에 효과적인 적용기술이라 판단된다.
        4,000원
        63.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To study the tolerant capacity of anaerobic granular sludge (AGS) to oxygen using semi -dynamic batch experiment, the aerating time, pH of the basal media, reductive inorganic materials, microorganism, and microorganism metabolite were investigated. When
        4,000원
        68.
        1995.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to more fully evaluate the potential for chlorophenol degradation in anaerobic sludge. The pH effects on the ring cleavage of phenol and dechlorination of monochlorophenol isomers and dichlorophenl isomers. This study results are as follows ; Each of the monochlorophenol isomers were degraded in anaerobic sludge. The relatives rates were 2-Chlorophenol > 3-Chlorophenol > 4-Chlorophenol. Biodegradation results for the dichlorophenol isomers in anaerobic sludge are such as 2,3-dichlorophenol and 2,5-dichlorophenol was reductively dechlorinated to 3-chlorophenol, 2,4-dichlorophenol to 4-chlorophenol, 2,6-dichlorophenol to 2-chlorophenol. The two dichlorophenol isomers which did not contain an ortho Cl substituent 3,4-dichlorophenol and 3,5-dichlorophenol were persistent during the 6-week incubation. The rate of dechlorination was enhanced by the presence of a Cl group ortho, rather than para, to the site of dechlorination.
        4,000원
        69.
        1994.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the rapid industrialization, an ever-increasing quantity and kind of new organic compounds pose environmental problems due to their toxicity and physiological effect. However, research on the biodegradation of these compounds under anaerobic condition is very limited inspite of its efficiency and economical advantage. In this research, the pH effect on the ring cleavage of phenol under anaerobic condition was investigated, and the theory of phase separation was applied to the degradation of phenol for investigating the role of acidogenic bacteria. Results, obtained from biochemical methane potential(BMP) assay for 15.5 days of incubation, showed that acidic condition was more desirable for phenol degradation than alkaline condition. By both unacclimated methanogenic granular sludge and two mixed cultures, phenol was completely removed within six weeks of incubation with a gas conversion rate of over 86% of theoretical one. However, phenol was not degraded by unacclimated acidogenic culture, and thus it is considered as a syntrophic substrate. In case of phase separated biochemical methane potential(PSBMP) assay, in which acidogenic and methanogenic culture were seeded separately and consecutively, those that had been subjected to normal acidogens for 3 to 4 weeks showed higher gas production than those seeded with sterile or frozen culture.
        4,000원
        71.
        1993.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to examine substrate removal characteristics with the variation of the hydraulic retention time in an anaerobic filter. The feed concentration of synthetic wastewater used in the experiment was $10,000mg/l$ glucose. As media, the porosity of volcanic stones in Jeju island were 76%. The conditions of the experiment were as follows; HRT ranging from 1 day to 3 day, loading rates ranging from 3.33kg $COD_{er}/void\;m^3.day$ to 10kg $COD_{er}/void\;m^3.day$ and a temperature $35^{\circ}C$. Based on the results of the experiments, the COD removal efficiency was 98~99% in $COD_{er}$ method with loading rates ranging from 3.33kgCOD/void $m^3.day$ to 10kg COD/void $m^3.day$ and HRT ranging from 1day to 3 day. The produced quantity of gas equivalant to a porosity volume was $1.332~3.756Nm^3/void\;m^3.day$. The relationship between $COD_{er}$ loading rates and gas produced quantity equivalant to a porosity volume was well fitted with the equation of $Nm^3/void\;m^3.day{\cdot}=0.359L_0+0.179$($L_0=COD$ loading rate). Judging from the removal efficiency in this experiment, We concluded that anaerobic filter using Volcanic stones is one of improved and effective. As media, practical value of volcanic stones is sufficient.
        4,000원
        72.
        1993.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Anaerobic Digestion of thickened septage was investigated in this study. Thickening could reduce the volume of septage to be treated to about 40% with 12hr HRT. The VS and BOD removal efficiencies were respectively 28 to 45%, and 75% when digested the thickened septage with 30 day HRT Or $1.4kgVS/m^3/d$. The BOD removal efficiency could be increased to about 90% with subsequent settling tank with about 6 hours HRT. The gas production rate was 0.22 to $0.35m^3gas/kgVSadd$($0.75m^3gas/kgVSrm$), or $1.32m^3gas/kgBOD_{rm}$. In addition, the supernatant of thickener could be returned to the aeration tank treating domestic sewage. In this case, a BOD loading rate of 0.5 to $0.7kgBOD/m^3/d$ or 0.5kgBOD/kgMLVSS/d was proposed for 80% BOD reduction.
        4,000원
        73.
        1993.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objectives of this paper are to present data to illustrate how an advanced digestion process, two-phase digestion, can provide superior performance in terms of waste stabilization efficiency and net energy recovery. As the result, it is possible to separate enrichment cultures of acidogenic and methanogenic organisms in isolated environments by kinetic control involving manipulation of dilution rates. In single-phase digestion process, HRT and COD loading for effective operation were 14.29 days and 2.33kg $COD/m^3$ day, but two-phase digestion may be conducted efficiently at 7 days of HRT and 5.71kg $COD/m^3$ day of loading. Data from this studies showed that the two-phase process is better than single-phase digestion under all test conditions when compared on the bases of gas yield and production rate, reductions of COD and VS, buffer capacity, and unconverted volatile acids in the effluent.
        4,000원
        74.
        2023.01 KCI 등재 서비스 종료(열람 제한)
        This study evaluated the biochemical methane potential (BMP) of primary sludge, secondary sludge, and food waste in batch anaerobic mono-digestion tests, and investigated the effects of mixture ratio of those organic wastes on methane yield and production rate in batch anaerobic co-digestion tests, that were designed based on a simplex mixture design method. The BMP of primary sludge, secondary sludge and food waste were determined as 234.2, 172.7, and 379.1 mL CH4/g COD, respectively. The relationships between the mixing ratio of those organic wastes with methane yield and methane production rate were successfully expressed in special cubic models. Both methane yield and methane production rate were estimated as higher when the mixture ratio of food waste was higher. At a mixing ratio of 0.5 and 0.5 for primary sludge and food waste, the methane yield of 297.9 mL CH4/g COD was expected; this was 19.4% higher than that obtained at a mixing ratio of 0.3333, 0.3333 and 0.3333 for primary sludge, secondary sludge, and food waste (249.5 mL CH4/g COD). These findings could be useful when designing field-scale anaerobic digersters for mono- and co-digestion of sewage sludges and food waste.
        75.
        2022.12 KCI 등재 서비스 종료(열람 제한)
        Herein , the effect of changes in the organic loading rate in anaerobic digestion was evaluated. The experiment was carried out by a laboratory -scale semi-continuous stirred tank reactor, and feedstock was food-waste leached. The organic loading rate was increased by 0.5 kgVS/m3 in each phase from 1.0 kgVS/m3 to 4.0 kgVS/m3. At the end of the operation, to check the failure of the reactor, the organic loading rate was increased by 1.0 kgVS/m3 in each phase and reached 6.0 kgVS/m3. This shows that the biogas yield decreased as organic loading rate increased. Biogas production seemed to be unstable at 3.5–6.0 kgVS/m3. Moreover, biogas production dramatically fell to approximately 0 mL at 6.0 kgVS/m3, which was decided as the operation failure on the 16th day of the las tphase. The result of the reactor analysis shows that the cumulation of volatile fatty acid increased as the organic loading rate increased. This seems to occur due to the decreasein pH in the reactor and led to extinction of anaerobic bacteria, which were the biogas products. Although the buffer compound (alkalinity) could prevent the decline in pH, the concentration of alkalinity was found to be lacking at a high organic loading rate
        76.
        2022.12 KCI 등재 서비스 종료(열람 제한)
        This study investigated microbial communities and their diversity in a full-scale mesophilic anaerobic digester treating sewage sludge. Influent sewage sludge and anaerobic digester samples collected from a wastewater treatment plant in Busan were analyzed using high-throughput sequencing. It was found that the microbial community structure and diversity in the anaerobic digester could be affected by inoculation effect with influent sewage sludge. Nevertheless, distinct microbial communities were identified as the dominant microbial communities in the anaerobic digester. Twelve genera were identified as abundant bacterial communities, which included several groups of syntrophic bacteria communities, such as Candidatus Cloacimonas, Cloacimonadaceae W5, Smithella, which are (potential) syntrophic-propionate-oxidizing bacteria and Mesotoga and Thermovigra, which are (potential) syntrophic-acetate-oxidizing bacteria. Lentimicrobium, the most abundant genus in the anaerobic digester, may contribute to the decomposition of carbohydrates and the production of volatile fatty acids during the anaerobic digestion of sewage sludge. Of the methanogens identified, Methanollinea, Candidatus Methanofastidiosum, Methanospirillum, and Methanoculleus were the dominant hydrogenotrophic methanogens, and Methanosaeta was the dominant aceticlastic methanogens. The findings may be used as a reference for developing microbial indicators to evaluate the process stability and process efficiency of the anaerobic digestion of sewage sludge.
        77.
        2022.07 KCI 등재 서비스 종료(열람 제한)
        In this study, the effect of different reaction times for thermal-alkaline pretreatment on the solubilization and biogasification of polyhydroxybutyrate (PHB) were evaluated. Thermal-alkaline pretreatment tests were performed at 73 °C and pH 13 at 0-120 h reaction times. The mesophilic anaerobic batch tests were performed with untreated and pretreated PHB samples. The increase in the pretreatment reaction time results in a 52.8-98.8% increase of the abiotic solubilization efficiency of the PHB samples. The reaction time required to achieve solubilization efficiencies of 50%, 90%, and 95% were 10.5, 52.0, and 89.6 h, respectively. The biogasification of the untreated PHB samples achieved a specific methane production rate of 3.6 mL CH4/g VSS/d and require 101.3 d for complete biogasification. The thermal-alkaline pretreatment significantly improved specific methane production rate (10.2-16.0 time increase), lag time (shortened by 76-81%), and time for complete biogasification (shortened by 21-83%) for the biogasification of the PHB samples when compared to those of the untreated PHB samples. The improvement was higher as the reaction time of the thermal-alkaline pretreatment increased. The findings of this study could be used as a valuable reference for the optimization of the biogasification process in the treatment of PHB wastes.
        78.
        2022.02 KCI 등재 서비스 종료(열람 제한)
        In this study, the inhibition of ammonia on anaerobic digestion of butyric acid was evaluated and the potential alleviating effects of such ammonia inhibition by the addition of magnetite particles were investigated. Independent anaerobic batch tests fed with butyric acid as a sole organic source were conducted in twenty 60-mL glass bottles with 10 different treatment conditions, comprising ammonia: 0.5, 2.0, 4.0, 6.0, and 7.0 g total ammonia nitrogen (TAN)/L and magnetite particles: 0 mM and 20 mM. The increase in ammonia concentration did not cause significant inhibition on methane yield; however, a significant inhibition on lag time and specific methane production rate was observed. The IC50 in the control treatments (without magnetite addition) was estimated as 6.2654 g TAN/L. A similar inhibition trend was observed in magnetite-added treatments; however, the inhibition effect by ammonia was significantly alleviated in lag time and specific methane production rate when compared to those in the control treatments. The lag time was shortened by 1.6–46.3%, specific methane production rate was improved by 6.0–69.0%. In the magnetite-added treatments, IC50 was estimated as 8.5361 g TAN/L. This study successfully demonstrated the potential of magnetite particles as an enhancer in anaerobic digestion of butyric acid under conditions of ammonia stress.
        79.
        2021.12 KCI 등재 서비스 종료(열람 제한)
        The present study investigated the effect of ammonia load on microbial communities in mesophilic anaerobic digestion of propionic acid. A laboratory-scale continuous anaerobic digester treating propionic acid as a sole organic substrate was operated under non-inhibitory condition and inhibitory conditions with ammonia (1.5 g and 3.5 g ammonia-N/L, respectively), and bacterial and archaeal communities in the steady states of each ammonia condition were analyzed using high-throughput sequencing. Thirteen bacterial families were detected as abundant bacterial groups in mesophilic anaerobic digestion of propionic acid. Increase in ammonia concentration resulted in significant shifts in microbial community structures. Syntorophobacter, Pelotomaculum, and Thermovigra were determined as the dominant groups of (potential) propionate oxidizing bacteria in the non-inhibitory condition, whereas Cryptanaerobacter and Aminobacterium were the dominant groups of (potential) propionate oxidizing bacteria in the ammonia-inhibitory condition. Methanoculleus and Methanosaeta were the dominant methanogens. Acetate-oxidation coupled with hydrogenotrophic methanogenesis might be enhanced with increases in the relative abundances of Methanoculleus and Tepidanaerobacter acetatoxydans under the ammonia-inhibitory condition. The results of the present study could be a valuable reference for microbial management of anaerobic digestion systems that are exposed to ammonia inhibition and propionic acid accumulation.
        80.
        2019.02 KCI 등재 서비스 종료(열람 제한)
        Organic wastewater generated from polyester manufacturing processes was selected from H company to investigate the feasibility of anaerobic digestion that produces gases including methane. Bio Methane Potential (BMP) tests were conducted to measure the gas production and methane concentration for 7 process wastewater and 2 kinds of sludges from the H company. Also, along with monitoring pH and alkalinity during the anaerobic digestion process, the concentrations of COD and 1,4-dioxane were measured with 4 different operating conditions for N Emulsion (NE) and Ethylene Glycol (EG) wastewater. The BMP tests showed that 65% of methane was produced from NE and EG wastewater. This suggests that the organic wastewater from H company can be effectively treated by an anaerobic digester by which more than 90% of COD was removed.
        1 2 3 4 5