검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 155

        21.
        2017.10 구독 인증기관·개인회원 무료
        RNA interference (RNAi) has been considered as an alternative strategy to control agricultural pests whereby double-strandedRNA triggers a potent and specific inhibition of its homologous mRNA. Since small double-stranded RNAs are requiredfor various RNAi applications, there is a need for cost-effective methods for producing large quantities of high-qualitydsRNA. Bacillus thuringiensis produces much insecticidal proteins with expression of their encoding genes being drivenby sporulation-dependent promoters. To develop dsRNA mass-production platform utilizing Bt, the pHT1K-EGFP plasmidvector which has cyt1Aa sporulation-dependent promoter was constructed. The transcriptional level of target gene (EGFP)is higher 113 times than Bt reference gene (ssPE). It was applied to protect honeybee from Sacbrood virus, so targetgene was replaced to SBV-vp1. By ingestion of Bt-derived dsRNA to honeybee shows positive effect on SBV suppression.
        22.
        2017.04 구독 인증기관·개인회원 무료
        RNA interference (RNAi) is an universal gene-knockdown mechanism in eukaryotic organisms including insects. RNAi has been considered as an alternative strategy to control agricultural pests whereby double-stranded RNA triggers a potent and specific inhibition of its homologous mRNA. Bacillus thuringiensis (Bt) is a spore-forming bacterium that produces a copious amount of crystal proteins δ-endotoxins under the control of sporulation-dependent promoter. In order to develop dsRNA mass-production platform utilizing recombinant Bt, the pHT1K-EGFP which expresses dsRNA against EGFP under the control of Cyt1-Aa sporulation-dependent promoter was constructed and the expression level of transgene (EGFP) was confirmed by qPCR analysis. These results suggested that Bt’s potential of becoming a new platform in dsRNA production.
        23.
        2017.04 구독 인증기관·개인회원 무료
        Insecticidal crystal toxins from the bacterium Bacillus thuringiensis (Bt) kill insects via a complex mode of action resulting in the creation of cytolytic pores in the membrane of midgut epithelial cells. These toxins are expressed in transgenic cotton and maize which have been adopted worldwide to control lepidopteran pests while reducing dependence on chemical insecticides. However, insect resistance to Bt toxins is increasing in certain key pest species. Beginning with Heliothis virescens, genetic studies in Bt-resistant Lepidoptera and Coleoptera have found mutations in ABC transporters. Cry1A, Cry1C, Cry2A, and Cry3B toxins each appear to target a different member of the ABC superfamily. These studies confirm the essential role of ABC proteins in Bt toxin mode of action. It is proposed that ABC proteins assist in the insertion of the toxin into the midgut epithelial membrane, a crucial step for which the mechanism has not been known in detail. Properties of ABC transporters suggest strategies to increase efficacy of Bt toxins and to delay the evolution of Bt toxin resistance in target insect pests.
        24.
        2016.04 구독 인증기관·개인회원 무료
        작은뿌리파리(Bradysia agrestis)는 많은 어린 작물의 뿌리를 직접 가해하여 생육을 억제하거나 고사시키는 심각한 피해를 일으키고 있는 해충이다. 대부분 이러한 피해를 막기 위하여 살충제에 의존하고 있지만 살충제는 저항성 개체의 출현, 인축에 대한 독성, 환경오염 등의 문제점이 있다. 반면 대표적인 곤충병원성 세균인 Bacillus thuringiensis는 인축 및 식물에 무해하며 내독소단백질을 형성하여 곤충에 대해 강력한 독성을 가진 것으로 알려져 있다. 따라서 본 연구는 곤충병원성 미생물을 이용한 친환경적 방제 방법을 탐색하고자 B. thuringiensis 균주를 대상으로 생물검정을 실시하였다. 파리목 유충에 대해 살충활성을 보이는 것으로 알려진 spherical type의 내독소단백질을 가진 16균주를 선발하여 생물검정을 실시한 결과, 높은 방제효과를 나타내며 속효성을 지닌 균주가 확인되었다. 방제효과를 나타낸 균주는 농도별 살충활성을 확인하였으며 SDS-PAGE를 통하여 단백질패턴을 분석하였다.
        25.
        2016.04 구독 인증기관·개인회원 무료
        This study tested a hypothesis that the bacterial immunosuppresants enhance BtI susceptibility of two mosquitoes, the forest mosquito (Aedes albopictus) and the house mosquito (Culex pipiens pallens). Three symbiotic bacteria Xenorhabdus nematophila (Xn), X. hominickii (Xh), and Photorhabdus temperata subsp. temperata (Ptt) were isolated from their symbiotic nematodes and cultured in nutrient broth to allow them to produce the secondary metabolites. BtI gave significant toxicities to A. albopictus and C. pipiens pallens larvae: 50% of lethal concentration to be 2.9 × 105 spores/mL and 2.2 × 105 spores/mL at 16 h after treatment, respectively. Addition of each bacteria-cultured broth significantly enhanced BtI toxicity to the mosquito larvae by lowering LC50 values of BtI to A. albopictus larvae (1.5 × 105 to Xn, 1.7 × 105 to Xh, and 1.9 × 105 to Ptt, respectively) and to C. pipiens pallens larvae (1.2 × 105 to Xn, 1.3 × 105 to Xh, and 1.5 × 105 to Ptt, respectively). Based on these results, we developed a new mosquitocidal Bt formulation called ‘Dip-Kill’, which consisted of 80% Xn-cultured broth, 10% BtI (1010 spores/mL), and 10% preservative. Only 400 ppm of Dip-Kill showed 100% mortality to fourth instar larvae of A. albopictus and C. pipiens pallens 16 h after treatment.
        26.
        2015.10 구독 인증기관·개인회원 무료
        Recently, Bacillus thuringiensis (Bt) cry genes encoding insecticidal Cry proteins have been widely applied for the construction of transgenic crops resistant to insect pests. This study aimed to construct novel mutant cry1Ac genes for genetically modified crops with enhanced insecticidal activities. Using multi-site directed mutagenesis, 34 mutant cry1Ac genes were synthesized and converted at 24 amino acid residues, located on domain I (8 residues) and domain II (16 residues). These mutant genes were expressed as a fusion protein with polyhedrin using the baculovirus expression system. The expressed proteins were occluded into polyhedra and activated stably to 65 kDa by trypsin. Among these, Mut-N04, N06, and N16 showed high levels of insecticidal activites against larvae of Plutella xylostella, Spodoptera exigua, and Ostrinia furnacalis. Mut-N16, which showed the highest insecticidal activity, is expected to be a desirable cry gene for introduction into transgenic crops. This study could provide useful means to construct mutant cry genes with improved insecticidal activities and expanded host spectrum for transgenic crops.
        27.
        2015.10 구독 인증기관·개인회원 무료
        Bacillus thuringiensis (Bt) is a gram-positive and spore-forming bacterium that produces parasporal inclusions containing Cry and Cyt proteins during sporulation. These inclusions or proteins are highly toxic to lepidopteran, dipteran, coleopteran larvae, and nematodes. Because of their selectable specificity and safety to non-target organisms and environment, Bt is considered as a valuable and safe alternative to chemical pesticides for eradication of insect pests. Bt biopesticide products has been commercialized and used very widely and successfully in agriculture, forestry and medical care markets since 1930s. In Korea, the screening for isolation of new Bt strains such as Bt Nt0423 (Tobbagi) and Bt GB-413 (Solbichae) have been performed and their commercial products were launched in agricultural markets. In terms of public health, mosquito larvicidal products made by Bt subsp. israelensis have been registered by Korean ministry of food and drug safety and used since 1995. Recently, a new mosquitocidal serovar (H3a3b3d), Bt subsp. mogi was isolated and its molecular characteristics were analyzed. In our opinion, Bt biopesticides might be still an effective and safe tool for insect pest control in agriculture and public health. Key words: Bacillus thuringiensis, biopesticide, Bt subsp. israelensis, mosqui
        28.
        2014.10 구독 인증기관·개인회원 무료
        The cry gene from Bacillus thuringiensis (Bt), encoding the Cry protein, has been recently introduced into crops to generate transgenic plants that are resistant to pest insects. In this study, through the 3D structure prediction and accompanying mutagenesis study for the Mod-Cry1Ac, 7 and 16 amino acid residues from domain I and II, respectively, responsible for its insecticidal activity against larvae of Spodoptera exigua and Ostrinia furnacalis were identified. We used site-directed mutagenesis to improve the insecticidal activity of Mod-Cry1Ac, resulted 31 mutant cry genes. These mutant cry genes were expressed, as a polyhedrin fusion form, using a baculovirus expression system. The expressed proteins were 95 kDa and SDS-PAGE analysis of the recombinant polyhedra revealed that expressed Cry proteins was occluded into polyhedra and activated stably to 65 kDa by trypsin. When the insecticidal activities of these mutant Cry proteins against to larvae of P. xylostella, S. exigua and O. furnacalis were assayed, they showed higher or similar insecticidal activity compared to those of Cry1Ac and Cry1C. Especially, Mutant-N16 is considered to have the potential for the efficacious biological insecticide since it showed the highest insecticidal activity.
        29.
        2014.10 구독 인증기관·개인회원 무료
        Crystals of proteinaceous insecticidal proteins, Cry proteins, produced by Bacill us thuringiensis (Bt) have been generally used used to control insect pests. In this st udy, through the 3D structure prediction and accompanying mutagenesis study for the Mod-Cry1Ac, 7 and 16 amino acid residues from domain I and II, respectively, responsible for its insecticidal activity against larvae of Plutella xylostella, Spodopt era exigua and Ostrinia furnacalis were identified. To construct novel cry genes wi th enhanced insecticidal activity, we randomly mutated these 24 amino acid sequen ces by in vitro muti site-directed mutagenesis, resulting in totally 34 mutant cry gen es. For further characterization, these mutant cry genes were expressed as a fusion protein with polyhedrin using baculovirus expression system. SDS-PAGE analysis of the recombinant polyhedra revealed that expressed Cry proteins was occluded in to polyhedra and activated stably to 65 kDa by trypsin. When the insecticidal activit ies of these mutant Cry proteins against to larvae of P. xylostella, S. exigua, and O. furnacalis were assayed, they showed higher or similar insecticidal activity compar ed to those of Cry1Ac and Cry1C. Especially, among them Mutant-N16 showed th e highest insecticidal activity against to both of P. xylostella, S. exigua and Ostrinia furnacalis. Therefore, Mutant-N16 is estimated to have the potential for the efficac ious bioagent.
        30.
        2014.04 구독 인증기관·개인회원 무료
        파밤나방에 활성있는 Bacillus thuringiensis subsp. kurstaki KB100균주에 protease inhibitor인 tannic acid을 혼합처리 했을 때 상승효과를 나타냈다. 본 연구에서는 tannins이 proteases의 활성을 떨어뜨려 나비목 유충의 생장을 억제한다 라는 가설을 토대로 실험을 진행하였다. B. thuringiensis균주와 중장액의 배양시간에 따른 독소의 분해정도를 확인하기 위해 SDS-PAGE를 수행하였다. KB100 toxin을 중장액으로 소화 시켜 시간대별로 단백질 밴드패턴을 확인 한 결과 60kDa의 활성독소가 시간이 지날수록 옅어지는 것을 확인한 반면 tannic acid를 첨가 했을 때는 60kDa의 살충활성 밴드가 계속해서 유지됨을 확인하였다. Trypsin에 의한 B. thuringiensis의 분해능을 SDS-PAGE로 분석한 결과 약 60kDa과 70kDa의 밴드를 나타냈고 tannic acid에 의해서 억제됨을 확인하였다. 파밤나방 중장액에 40mM tannic acid를 처리한 후 각각의 기질에 활성을 측정한 결과 trypsin의 기질인 BApNA, BPVApNA는 각각 62.2±0.3%, 54.5±1.1%의 활성을 나타냈다. 40mM tannic acid의 기질에 대한 단백질 분해 활성 억제정도를 비교한 결과 trypsin 각각의 기질에 대한 활성은 40mM tannic acid를 처리 했을 때 약 30∼40% 활성을 억제하는 것을 확인 하였다. Tannic acid는 serine 계열의 proteases 중에서 trypsin의 활성을 효과적으로 억제하는 것을 예상할 수 있었다. 이와 같은 결과를 토대로 파밤나방 중장 proteases중 trypsin의 서열을 밝히기 위해 5'RACE PCR법을 이용하여 실험을 수행하고 있다.
        31.
        2014.04 구독 인증기관·개인회원 무료
        Bacillus thuringiensis (Bt) is a Gram-positive and soil-dwelling bacterium and well known for its ability to produce insecticidal parasporal crystalline protein inclusions, which have attracted worldwide interest for effective pest management. A diseased silkworm by Bt was first discovered by Japanese scientist Ishiwata Shigetane in 1901, and in 10 years, it was re-discovered in Germany by Ernst Berliner, who isolated it as the cause of a disease called Schlaffsucht in flour moth caterpillars. The first commercial product, Bt. kurstaki HD-1 was released to a market in France in 1938. Optimization of mass production for crystal production and cost down enabled the industrialization to be successful, and now many products, such as WP, EC, SC and tablets are used worldwide. In 1976 Robert A. Zakharyan found that plasmids in Bt are involved in the production of crystal proteins and endospores. Pore formation model and signal transduction model were revealed to explain the mode of action of Bt. Works on Bt resistance included a group of receptors of crystal proteins, such as cadherin, APN and ALP. In 1996, a Bt cry gene was integrated to cotton, which successfully reached markets. AtMT technology was used to generate Bt crops. Now the area planted worldwide to genetically engineered Bt crops increased to 66 million hectares. Refuge may be particularly important in slowing the spread of insects resistant to the Bt insecticides. Researchers are trying to increase the insecticidal efficacy of integrated Bt crystal proteins using recent biotechnology.
        32.
        2013.10 구독 인증기관·개인회원 무료
        The novel serogroup of Bacillus thuringiensis serovar mogi (H3a3b3d) was isolated from fallen leaves, sampled in a forest region of the city of Mungyeong, Korea. Plasmids from B. thuringiensis have been implicated in pathogenicity as they carry the genes responsible for different types of diseases in mammals and insects. In this study, the genome sequence of the strain was determined. The 6.0-Mb genome of B. thuringiensis mogi contains three replicons: a circular chromosome (5.40-Mb) encoding 5,652 predicted open reading frames (ORFs), and two megaplasmids, pMOGI364 (364 564 bp) and pMOGI222 (222 348 bp). The G+C contents of these replicons ranged from 31.3% to 34.2% for pMOGI364 and pMOGI222, respectively. There are six putative cry genes, cry19Bb1, cry73Aa, cry20Bb1, cry27Ab1, cry4Aa and cry56Ba1, distributed on these two megaplasmids. To investigate the role of these genes in crystal production, the expression profiles of these toxin genes were analyzed by quantitative PCR (qPCR) from the wild type strain. Also, these cry genes were cloned to the Escherichia coli-B. thuringiensis shuttle vector, pHT1K under the control of its own promoter and then introduced into an acrystalliferous B. thuringiensis Cry-B strain for further molecular characterization.
        33.
        2013.10 구독 인증기관·개인회원 무료
        Proteinaceous insecticidal proteins, Cry proteins, from Bacillus thuringiensis (Bt) are insecticidal proteins that are highly active against several species of Lepidoptera. Thus, cry genes encoding these Cry proteins have been widely applied for construction of transgenic crops resistant to pest insects. In this study, through the 3D structure prediction and accompanying mutagenesis study for the Mod-Cry1Ac, 7 and 16 amino acid residues from domain I and II, respectively, responsible for its insecticidal activity against larvae of Spodoptera exigua and Ostrinia furnacalis were identified. We used site-directed mutagenesis to improve the insecticidal activity of Mod-Cry1Ac, resulted 31 mutant cry genes. These mutant cry genes encodes potent insecticidal proteins in the form of crystalline protoxins of 95 kDa. SDS-PAGE analysis of the recombinant polyhedra revealed that expressed Cry proteins was occluded into polyhedra and activated stably to 65 kDa by trypsin. When the insecticidal activities of these mutant Cry proteins against to larvae of P. xylostella, S. exigua and O. furnacalis were assayed, they showed higher or similar insecticidal activity compared to those of Cry1Ac and Cry1C. Especially, Mutant-N16 is considered to have the potential for the efficacious biological insecticide since it showed the highest insecticidal activity.
        34.
        2013.10 구독 인증기관·개인회원 무료
        미국 알래스카주 Anchorage 지진공원과 Denali cantwell 토양에서 분리된 Bacillus thuringiensis(이하 B.t) 균주에서 나방류 해충에 살충활성을 나타내는 새로운 균주 를 선발하였다. B.t는 친환경농업에서 주요 작물보호 농자재로 사용되는 생물농약 으로 곤충병원성세균이다. δ-내독소는 곤충이 섭식할 때에 중장세포막에 결합하 여 이를 파괴하여 영양분의 흡수를 제한하여 치사에 이르게 한다. 선발한 균주의 내 독소 단백질을 위상차현미경으로 관찰한 결과 spore와 crystal 형태를 확인하였다. 난방제 해충인 담배거세미나방(Spodoptera litura), 파밤나방(Spodoptera exigua), 배추좀나방(Plutella xylostella)에 대해 다른 균주와 비교 검토하였다. 단백질 패턴 분석과 담배거세미나방(S. litura), 파밤나방(S. exigua) 중장액을 처리하였을 때 분 해억제정도를 보기위한 SDS-PAGE를 수행하였다. SDS-PAGE의 단백질 패턴 분 석 결과로 plasmid DNA 전기영동을 하여 패턴의 차이를 분석하였다. 또한, 균주에 서 Cry1 내독소 유전자가 존재하는 것을 확인하기 위하여 PCR을 수행하였다.
        35.
        2013.10 구독 인증기관·개인회원 무료
        나비목 유충의 소화효소중 Serine protease인 trypsin은 단백질 가수분해과정에 서 주요한 역할을 하는 것으로 알려져 있으나 protease의 지속적인 가수분해결과 독소 단백질의 불화성화를 초래하여 살충활성을 낮춘다고 보고되어 있다. 이 전 연 구에서 Bacillus thuringiensis(이하 B,thuringiensis) subsp. kurstaki KB100균주는 protease inhibitor인 tannic acid와 혼합처리 함으로써 파밤나방의 살충활성에 상승 효과를 나타냈다. 이에 대한 원인을 구명하고자 나비목 유충 중장속 소화액의 다양 한 Protease와 균주특이성에 초점을 두고 실험을 수행하였다. 균주의 특이성을 알아보기 위해서실험실 보관 균주 6종과 기준균주인 B. thuringiensis susp. kurstaki HD-1을 선발하여 총 7종의 균주에 각각 tannic acid를 농도별로 처리하여 생물검정을 실시하였다. B. thuringiensis KB100균주는 40mM tannic acid농도로 혼합처리 했을 때 상승효과를 나타낸 반면 다른 균주는 영향을 끼치지 않았다. 생물검정 결과를 토대로 나비목 유충의 소화효소 중 Serine protease의 활성을 알아보기 위해 protease 특이적 기질을 사용하여 tannic acid가 어떤 종류의 protease activity를 낮추는지 실험을 수행 하였다.
        36.
        2013.04 구독 인증기관·개인회원 무료
        Bacillus thuringiensis(이하 B.t)는 곤충병원성세균으로 친환경농업에서 주요 작물보호 농자재로 사용되는 생물농약 중 하나이다. B.t는 그람양성의 호기성이며, spore와 crystal를 형성하고 포자 형성기에는 균체 내에 δ-내독소라는 독소단백질 을 생성한다. 딱정벌레목인 청동풍뎅이의 사체로부터 분리된 CAB530균주와 영 동 토양에서 분리된 CAB564균주는 나비목 해충에 살충활성을 나타내는 것을 확 인하였다. 위의 균주와 기존에 연구된 KB098, KB099, KB100을 비교하기 위해 실 내에서 누대 사육한 담배거세미나방(Spodoptera litura), 배추좀나방(Plutella xylostella), 파밤나방(Spodoptera exigua), 파리목(Diptera) 해충에 대해 생물검정 을 수행하였다. 단백질 패턴 분석과 담배거세미나방(S. litura), 파밤나방(S. exigua) 중장액을 처리하였을 때 분해억제정도를 보기위한 SDS-PAGE를 수행하 였다. SDS-PAGE의 단백질 패턴 분석 결과로 plasmid DNA 전기영동을 하여 패턴 의 차이를 분석하였다. CAB530균주와 CAB564균주의 내독소 유전자의 Cry형 유 전자를 동정하기 위하여 PCR을 수행할 계획이다.
        37.
        2013.04 구독 인증기관·개인회원 무료
        Bacillus thuringiensis (Bt) is a gram-positive bacterium that produces parasporal crystal proteins known as endotoxins or Cry proteins. The Cry protoxins are then cleaved by insect midgut proteinases to form active Bt toxins. The activated Cry protein then binds to specific receptors at the midgut epithelium. Cadherin-like and aminopeptidase N (APN) proteins are involved in Bt toxin binding by interacting sequentially with different toxin structures. Aminopeptidase N (APNs) from several insect species have been shown to be putative receptors for these toxins. We have characterized four different midgut APNs(APN1, APN2, APN3, APN4) cDNAs from S. exigua. Forward primers and reverse primers for confirmation of four different midgut APNs were designed based on their sequences cloned from the cDNA libraries. Quantitative RT-PCR procedures includes 42℃ for 20min (cDNA synthesis), 99℃ for 5min, and 35 cycles (94℃ for 1min, and 60℃ for 50 s) for collection. Four aminopeptidase N isoforms were confirmed with qRT-PCR. Sequence analysis was performed by BlastX search the National Center for Biotechnology Information(NCBI) nucleotide. Furthermore, double-stranded RNAs(dsRNAs) were synthesized. DsRNAs were determined for bioassay.
        38.
        2013.04 구독 인증기관·개인회원 무료
        Plasmids are crucial for determining the pathogenicity and host range of organisms of the Bacillus thuringiensis strains. In this research, a novel serogroup of B. thuringiensis serovar mogi (H3a3b3d), which showed mosquitocidal activity against Anopheles sinensis and Culex pipiens pallens, was isolated from fallen leaves in Mungyeong city, Republic of Korea. In contrast to the complicated plasmid profiles of B. thuringiensis H3 serotype strains, the B. thuringiensis serovar mogi contained two megaplasmids (> 30 MDa) on which the toxin genes were occasionally located. Sequence analysis using 454-pyrosequencing revealed that there are 7 putative cry genes, cry19Bb1, cry73Aa, cry40orf2, cry20Bb1, cry27Ab1, cry56Ba1 and cry39orf2, distributed on the two different megaplasmids, respectively. These cry genes were cloned to the Escherichia coli-B. thuringiensis shuttle vector, pHT1K under the control of its own promoter and p1KSD, which is a recombinant expression vector containing cyt1Aa promoter combined with the STAB-SD sequence, and then introduced into an acrystalliferous B. thuringiensis Cry-B strain for further molecular characterization. To investigate the role of these genes in crystal production, the expression profiles of these toxin genes were analyzed by quantitative PCR (qPCR) from the wild type strain. These results clearly indicate that the cry39orf2 was the dominant ingredient in the crystal. This novel 3a3b3d type strain, B. thuringiensis serovar mogi, could be used as a good resource for studying unknown mosquitocidal cry genes.
        39.
        2013.04 구독 인증기관·개인회원 무료
        Crystals of proteinaceous insecticidal proteins, Cry proteins, produced by Bacillus thuringiensis (Bt) have been generally used to control insect pests. In this study, through the 3D structure prediction and accompanying mutagenesis study for the Mod-Cry1Ac, 7 and 16 amino acid residues from domain I and II, respectively, responsible for its insecticidal activity against larvae of Spodoptera exigua and Ostrinia furnacalis were identified. To construct novel cry genes with enhanced insecticidal activity, we randomly mutated these 23 amino acid sequences by in vitro muti site-directed mutagenesis, resulting in totally 24 mutant cry genes. For further characterization, these mutant cry genes were expressed as a fusion protein with polyhedrin using baculovirus expression system. SDS-PAGE analysis of the recombinant polyhedra revealed that expressed Cry proteins was occluded into polyhedra and activated stably to 65 kDa by trypsin. When the insecticidal activities of these mutant Cry proteins against to larvae of P. xylostella and S. exigua were assayed, they showed higher or similar insecticidal activity compared to those of Cry1Ac and Cry1C. Especially, among them Mutant-N16 showed the highest insecticidal activity against to both of P. xylostella and S. exigua. Therefore, Mutant-N16 is considered to have the potential for the efficacious biological insecticide.
        40.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 배추좀나방(Plutella xylostella) 집단은 피레스로이드 농약에 대해서 저항성을 보이며, 이는 이 살충제의 작용점인 소듐이온채널 유전자의 돌연변이에 기인된다. 더욱이 배추좀나방은 대부분 상용화된 살충제에 대해서 저항성을 발달시킬 수 있다. 본 연구는 배추좀나방을 효과적으로 방제하기 위해 내부기생성 천적인 프루텔고치벌(Cotesia plutellae)과 미생물농약인 Bacillus thuringiensis의 혼합처리 기술을 개발하기 위해 수행되었다. 프루텔고치벌이 감수성과 저항성 배추좀나방에 대한 기생 선호성에 차등이 있는 지 조사하기 위해 다섯 개 서로 다른 집단에 대해서 살충제 감수성과 프루텔고치벌 기생성 차이를 비교하였다. 이들 배추좀나방 집단들은 피레스로이드, 유기인계, 네오니코틴계 및 곤충성장조절제를 포함하는 세 종류의 상용 살충제에 대한 약제 감수성에서 뚜렷한 차이를 보였다. 그러나 이들 집단들은 프루텔고치벌에 의한 기생률에서는 차이를 보이지 않았다. 더욱이 기생된 배추좀나방은 B. thuringiensis에 대해서 감수성이 증가되었다. 프루텔고치벌이 갖는 면역억제인자 가운데 바이러스 유래 ankyrin 유전자(vankyrin)를 비기생된 배추좀나방에 발현시켰다. Vankyrin의 발현은 배추좀나방 3령충의 B. thuringiensis에 대한 감수성을 현격하게 증가시켰다. 즉, 프루텔고치벌에 의해 야기된 면역저하가 B. thuringiensis의 살충력을 증가시켰다. 이러한 결과들은 프루텔고치벌과 미생물농약인 B. thuringiensis의 혼합처리가 살충제 저항성 배추좀나방을 효과적으로 방제할 수 있다고 제시하고 있다.
        4,000원
        1 2 3 4 5