검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        1.
        2024.04 구독 인증기관·개인회원 무료
        탄소섬유 강화 플라스틱 (Carbon fiber reinforced plastics, CFRP)은 고함량의 탄소섬유 (Carbon fiber, CF)와 고분자로 이루어진 복합재료로서, 뛰어난 기계적 성능으로 항공우주, 자동차, 토목 등 다 양한 산업 분야에서 사용되고 있다. 하지만 사용량 증가에 따른 폐기물의 환경문제와 추출한 재활용 탄소섬유 (Recycled carbon fiber, rCF)의 적용 가능 분야의 한계로 인해 재활용이 제한적인 실정이 다. 본 연구에서는 rCF와 CF 혼입 시멘트계 전자파 복합재를 제작하여 그 성능을 비교 분석하기 위 한 실험을 수행하였다. 구성재료는 시멘트, 잔골재, 고성능 감수제를 사용하였으며, 비교 분석을 위해 CF와 rCF를 각각 6 mm, 12 mm 길이를 0.1, 0.3, 0.5, 1.0 wt.% 함량으로 사용하였다. 전자파 복합 재의 흡수 성능 향상을 위해 각각 다른 함량의 다층 구조를 형성하였으며, 전자파 투과를 낮은 함량에 서 높은 함량 방향이 되도록 측정을 진행하였다. 전자파 차폐성능은 재령 28일 이후 네트워크 분석기 를 사용하여 자유 공간에서 측정하였으며, C-band (4~8 GHz)와 X-band (8~12 GHz) 주파수 영역 에서의 반사율과 투과율을 각각 측정하였다.
        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanotube fiber is a promising material in electrical and electronic applications, such as, wires, cables, batteries, and supercapacitors. But the problem of joining carbon nanotube fiber is a main obstacle for its practical development. Since the traditional joining methods are unsuitable because of low efficiency or damage to the fiber structure, new methods are urgently required. In this study, the joining between carbon nanotube fiber was realized by deposited nickel–copper doublelayer metal via a meniscus-confined localized electrochemical deposition process. The microstructures of the double-layer metal joints under different deposition voltages were observed and studied. It turned out that a complete and defect-free joint could be fabricated under a suitable voltage of 5.25 V. The images of the joint cross section and interface between deposited metal and fiber indicated that the fiber structure remained unaffected by the deposited metal, and the introduction of nickel improved interface bonding of double-layer metal joint with fiber than copper joint. The electrical and mechanical properties of the joined fibers under different deposition voltages were studied. The results show that the introduction of nickel significantly improved the electrical and mechanical properties of the joined fiber. Under a suitable deposition voltage, the resistance of the joined fiber was 37.7% of the original fiber, and the bearing capacity of the joined fiber was no less than the original fiber. Under optimized condition, the fracture mode of the joined fibers was plastic fiber fracture.
        4,500원
        3.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study compares the characteristics of a compact TiO2 (c-TiO2) powdery film, which is used as the electron transport layer (ETL) of perovskite solar cells, based on the manufacturing method. Additionally, its efficiency is measured by applying it to a carbon electrode solar cell. Spin-coating and spray methods are compared, and spraybased c-TiO2 exhibits superior optical properties. Furthermore, surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) exhibits the excellent surface properties of spray-based TiO2. The photoelectric conversion efficiency (PCE) is 14.31% when applied to planar perovskite solar cells based on metal electrodes. Finally, carbon nanotube (CNT) film electrode-based solar cells exhibits a 76% PCE compared with that of metal electrodebased solar cells, providing the possibility of commercialization.
        4,000원
        4.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, N/S co-doped carbon felt (N/S-CF) was prepared and characterized as an electrode material for electric double-layer capacitors (EDLCs). A commercial carbon felt (CF) was immersed in an aqueous solution of thiourea and then thermally treated at 800 oC under an inert atmosphere. The prepared N/S-CF showed a large specific surface area with hierarchical pore structures. The electrochemical performance of the N/S-CF-based electrode was evaluated using both 3- electrode and 2-electrode systems. In the 3-electrode system, the N/S-CF-based electrode showed a good specific capacitance of 177 F/g at 1 A/g and a good rate capability of 41% at 20 A/g. In the 2-electrode system (symmetric capacitor), the freestanding N/S-CF-based electrode showed a specific capacitance of 275 mF/cm2 at 2 mA/cm2, a rate capability of 62.5 % at 100 mA/cm2, a specific power density of ~ 25,000 mW/cm2 at an energy density of 23.9 mWh/cm2, and a cycling stability of ~ 100 % at 100 mA/cm2 after 20,000 cycles. These results indicate the N/S co-doped carbon felts can be a promising candidate as a new electrode material in a symmetric capacitor.
        4,000원
        5.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Engineering the microstructure of the carbonaceous materials is a promising strategy to enhance the capacitive performance of supercapacitors. In this work, nanostructured Black Pearl (1500 BP) carbon which is a conductive carbon being commercially used in printing rolls, conductive packaging, conductive paints, etc. is analyzed for its feasibility as an electrode material for Electric Double-Layer Capacitors (EDLCs). To achieve that commercial Black Pearl (BP), carbon is treated with mild acid H3PO4 to remove the impurities and enhance the active sites by regulating the growth of agglomerates and creating micropores in the nano-pigments. Generally, the coalescence of nanoparticles owing to their intrinsic surface energy has tendency to create voids of different sizes that act like meso/micropores facilitating the diffusion of ions. The electrochemical performance of BP carbon before and after chemical activation is investigated in aqueous ( H2SO4, KOH and KCl) and a non-aqueous electrolyte (1 M TEMABF4 in acetonitrile) environment employing different electrochemical techniques such as Cyclic Voltammetry (CV), Galvanostatic charge/discharge (GCD) and Electrochemical Impendence Spectroscopy (EIS). The chemically activated BP carbon delivers the highest specific capacitance of ∼156 F g−1 in an aqueous electrolyte, 6 M KOH. The highest specific power, ~ 15.3 kW kg−1 and specific energy, 14.6 Wh kg−1 are obtained with a symmetric capacitor employing non-aqueous electrolyte because of its high working potential, 2.5 V.
        4,000원
        6.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we developed a facile and template-free strategy for the preparation of activated porous carbon beads (APCBs) from polyacrylonitrile. The chemical activation with KOH was found to enhance the pore properties, such as specific surface area (SSA), pore volume, and pore area. The APCBs exhibited a large SSA of 1147.99 m2/g and a pore area of 131.73 m2/g. The APCB-based electrodes showed a good specific capacitance of 112 F/g at 1 A/g in a 6 M KOH electrolyte, and excellent capacitance retention of 100% at a current density of 5 A/g after 1000 cycles. Therefore, the APCBs prepared in this study can be applied as electrode materials for electric double-layer capacitors.
        4,000원
        7.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The photovoltaic properties of perovskite solar cells (PSCs) with a carbon electrode fabricated using different annealing processes are investigated. Perovskite formation (50 oC, 60 min) using a hot-plate and an oven is carried out on cells with a glass/fluorine doped TiO2/TiO2/ZrO2/carbon structure, and the photovoltaic properties of the PSCs are analyzed using a solar simulator. The microstructures of the PSCs are characterized using an optical microscope, a field emission scanning electron microscope, and an electron probe micro-analyzer (EPMA). Photovoltaic analysis shows that the energy conversion efficiency of the samples fabricated using the hot-plate and the oven processes are 2.08% and 6.90%, respectively. Based on the microstructure of the samples and the results of the EPMA, perovskite is formed locally on the carbon electrode surface as the γ-butyrolactone (GBL) solvent evaporates and moves to the top of the carbon electrode due to heat from the bottom of the sample during the hot plate process. When the oven process is used, perovskite forms evenly inside the carbon electrode, as the GBL solvent evaporates extremely slowly because heat is supplied from all directions. The importance of the even formation of perovskite inside the carbon electrode is emphasized, and the feasibility of oven annealing is confirmed for PSCs with carbon electrodes.
        4,000원
        8.
        2019.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area(1,296.1 m2 g−1), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance(195 F g−1) at low current density of 0.1 A g−1 and excellent specific capacitance(164 F g−1) at high current density of 2.0 A g−1. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.
        4,000원
        9.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To improve the performance of carbon nanofibers as electrode material in electrical double-layer capacitors (EDLCs), we prepare three types of samples with different pore control by electrospinning. The speciments display different surface structures, melting behavior, and electrochemical performance according to the process. Carbon nanofibers with two complex treatment processes show improved performance over the other samples. The mesoporous carbon nanofibers (sample C), which have the optimal conditions, have a high sepecific surface area of 696 m2 g−1, a high average pore diameter of 6.28 nm, and a high mesopore volume ratio of 87.1%. In addition, the electrochemical properties have a high specific capacitance of 110.1 F g−1 at a current density of 0.1 A g−1 and an excellent cycling stability of 84.8% after 3,000 cycles at a current density of 0.1 A g−1. Thus, we explain the improved electrochemical performance by the higher reaction area due to an increased surface area and a faster diffusion path due to the increased volume fraction of the mesopores. Consequently, the mesoporous carbon nanofibers are demonstrated to be a very promising material for use as electrode materials of high-performance EDLCs.
        4,000원
        10.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The high theoretical energy density (2600 Wh kg−1) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur (1672 mAh g−1) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of 1400 mAh g−1 at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a 1200 mAh g−1 initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.
        4,000원
        13.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanofibers (CNF) are widely used as active agents for electrodes in Li-ion secondary battery cells, supercapacitors, and fuel cells. Nanoscale coatings on CNF electrodes can increase the output and lifespan of battery devices. Atomic layer deposition (ALD) can control the coating thickness at the nanoscale regardless of the shape, suitable for coating CNFs. However, because the CNF surface comprises stable C–C bonds, initiating homogeneous nuclear formation is difficult because of the lack of initial nucleation sites. This study introduces uniform nucleation site formation on CNF surfaces to promote a uniform SnO2 layer. We pretreat the CNF surface by introducing H2O or Al2O3 (trimethylaluminum + H2O) before the SnO2 ALD process to form active sites on the CNF surface. Transmission electron microscopy and energy-dispersive spectroscopy both identify the SnO2 layer morphology on the CNF. The Al2O3-pretreated sample shows a uniform SnO2 layer, while island-type SnOx layers grow sparsely on the H2Opretreated or untreated CNF.
        4,000원
        14.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Mesoporous carbon nanofibers as electrode material for electrical double-layer capacitors(EDLCs) are fabricated using the electrospinning method and carbonization. Their morphologies, structures, chemical bonding states, porous structure, and electrochemical performance are investigated. The optimized mesoporous carbon nanofiber has a high sepecific surface area of 667 m2 g−1, high average pore size of 6.3 nm, and high mesopore volume fraction of 80 %, as well as a unifom network structure consiting of a 1-D nanofiber stucture. The optimized mesoporous carbon nanofiber shows outstanding electrochemical performance with high specific capacitance of 87 F g−1 at a current density of 0.1 A g−1, high-rate performance (72 F g−1 at a current density of 20.0 A g−1), and good cycling stability (92 F g−1 after 100 cycles). The improvement of the electrochemical performance via the combined effects of high specific surface area are due to the high mesopore volume fraction of the carbon nanofibers.
        4,000원
        15.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of 703 m2 g−1, total pore volume of 0.51 cm3 g−1, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of 143 F g−1, high-rate performance, high energy density of 17.9-13.0Wh kg−1, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.
        4,000원
        16.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) precarbonized at 500–1000°C in N2 gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at 700°C, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above 700°C and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.
        4,200원
        17.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A hierarchical pore structured novolac-type phenol based-activated carbon with micropores and mesopores was fabricated. Physical activation using a sacrificialsilicon dioxide (SiO2) template and chemical activation using potassium hydroxide (KOH) were employed to pre-pare these materials. The morphology of the well-developed pore structure was character-ized using field-emissionscanning electron microscopy. The novolac-type phenol-based activated carbon retained hierarchical pores (micropores and mesopores); it exhibited high Brunauer-Emmett-Teller specificsurface areas and hierarchical pore size distributions. The hierarchical pore novolac-type phenol-based activated carbon was used as an electrode in electric double-layer capacitors, and the specificcapacitance and the retained capacitance ratio were measured. The specificcapacitances and the retained capacitance ratio were en-hanced, depending on the SiO2 concentration in the material. This result is attributed to the hierarchical pore structure of the novolac-type phenol-based activated carbon.
        4,000원
        18.
        2012.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A sample of ultra low carbon IF steel was processed by six-layer stack accumulative roll-bonding (ARB) and annealed. The ARB was conducted at ambient temperature after deforming the as-received material to a thickness of 0.5 mm by 50% cold rolling. The ARB was performed for a six-layer stacked, i.e. a 3 mm thick sheet, up to 3 cycles (an equivalent strain of ~7.0). In each ARB cycle, the stacked sheets were, first, deformed to 1.5 mm thickness by 50% rolling and then reduced to 0.5 mm thickness, as the starting thickness, by multi-pass rolling without lubrication. The specimen after 3 cycles was then annealed for 0.5 h at various temperatures ranging from 673 to 973 K. The microstructural evolution with the annealing temperature for the 3-cycle ARB processed IF steel was investigated in detail by transmission electron microscopy observation. The ARB processed IF steel exhibited mainly a dislocation cell lamella structure with relatively high dislocation density in which the subgrains were partially observed. The selected area diffraction (SAD) patterns suggested that the misorientation between neighboring cells or subgrains was very small. The thickness of the grains increased in a gradual way up to 873 K, but above 898 K it increased drastically. As a result, the grains came to have an equiaxed morphology at 898 K, in which the width and the thickness of the grains were almost identical. The grain growth occurred actively at temperatures above 923 K.
        4,000원
        19.
        2009.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Multi-walled carbon nanotubes (MWNTs) were synthesized on different substrates (bare Si and SiO2/Si substrate) to investigate dye-sensitized solar cell (DSSC) applications as counter electrode materials. The synthesis of MWNTs samples used identical conditions of a Fe catalyst created by thermal chemical vapor deposition at 900˚C. It was found that the diameter of the MWNTs on the Si substrate sample is approximately 5~10nm larger than that of a SiO2/Si substrate sample. Moreover, MWNTs on a Si substrate sample were well-crystallized in terms of their Raman spectrum. In addition, the MWNTs on Si substrate sample show an enhanced redox reaction, as observed through a smaller interface resistance and faster reaction rates in the EIS spectrum. The results show that DSSCs with a MWNT counter electrode on a bare Si substrate sample demonstrate energy conversion efficiency in excess of 1.4 %.
        3,000원
        20.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mesoporous activated carbon (AC) was prepared from aged petroleum coke through chemical activation. The AC has a specific surface area of 1733 m2/g and a mean pore diameter of 2.37 nm. The volume fraction of 2 to 4nm pores is 56.74%. At a current density of 10 mA/cm2, a specific capacitance of 240 F/g is achieved representing the use factor of the surface area of 69.2%. And the electrical double layer capacitor (EDLC) based on the AC shows an excellent power performance. This result suggests that the presence of high fraction of mesopores can effectively increase the adsorption efficiency of the specific surface area of the AC and enhance the power performance of EDLC based on the efficient surface area of the AC.
        3,000원
        1 2