검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 54

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Energy storage for sustainable development and progress of power production industries is vitally important. The energy storage devices are under extensive research from last three decades to ensure the hand-on-hand coordination with power supply phenomenon and to reduce the energy loses in lines. The cost-effective materials are still highly demanding as an electrode material for energy storage devices. Biomass-derived carbon materials are best candidates due to their low cost, relatively high abundance, pollution-free nature. Here, we are reporting a facile two-step green approach to convert Himalayan horse chestnuts (HHCNs) into activated carbon materials. In first step, grinding and pyrolysis of the HHCNs were carried out, and then activation was performed using KOH to enhance the pore density and surface area. HHCNs-derived carbon was utilized as an electrode in electrical double-layer capacitors (EDLCs) with 1 M H2SO4 as an electrolyte. The macroporous structure along with hierarchical porous network acts as an efficient source of transportation of charges across the electrode and separator. Cyclic voltammetry test was taken from 10 to 100 mV/s current and within a range of 0–1 V applied potential; approximately rectangular CV shown mirror response towards current and shown typical EDLCs properties. The proximate analysis confirms the presence of heteroatoms like sulfur, oxygen, and nitrogen which act as carbon dopants. The wettability of HHCNs-derived carbon enhanced due to the various types of oxygen functionalities inherited from the lignin skeletal part. The nitrogen content is primarily responsible for the pseudo-capacitive behavior of HHCNs-codoped carbon. HHCNs-derived activated carbon materials has emerged as a promising electrode material for energy storage applications.
        4,000원
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An optical fluorescence quenching sensor based on functionally modified iron-doped carbon nanoparticles was designed for the selective and sensitive Cr(VI) ion detection. Multifunctional iron-doped carbon nanoparticles were enclosed in the scaffolds of a promising stable nanocarrier system called hyperbranched polyglycerol (HPG), which has been fluorescently modified with 1-pyrene butyric acid using the Steglich esterification procedure. The therapeutic and diagnostic capabilities were boosted when these nanoparticles were enclosed in the fluorescently modified dendritic structure, HPG. Iron-doped carbon nanoparticles coupled with fluorescently modified hyperbranched polyglycerol can be used as a sensor for metal ions and can then be used to successfully remove them from a sample. Moreover, the synthesised nanoparticles demonstrated promising antimicrobial efficacy against bacteria and fungi. These results are also discussed in detail.
        4,900원
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, norepinephrine (NE) was determined by an electrochemical sensor represented by a carbon paste electrode boosted using nitrogen-doped porous carbon (NDPC) derived from Spirulina Platensis microalga anchored CoFe2O4@ NiO and 1-Ethyl-3-methylimidazolium acetate (EMIM Ac) ionic liquid. The morphological characteristics of the catalyst were recorded by field emission scanning electron microscope (FE-SEM) images. Moreover, the electrochemical behavior of norepinephrine on the fabricated electrode was checked using various voltammetric methods. All tests were done at pH 7.0 as the optimized condition in phosphate buffer solution. The results from linear sweep voltammetry revealed that the electro-oxidation of norepinephrine was diffusion, and the diffusion coefficient value was obtained by chronoamperometry (D⁓6.195 × 10– 4). The linear concentration of the modified electrode was obtained from 10 to 500 μM with a limit of detection of 2.26 μM using the square wave voltammetry (SWV) method. The sensor selectivity was investigated using various species, and the results from stability and reproducibility tests showed acceptable values. The sensor's efficiency was tested in urine and pharmaceutical as real samples with recovery percentages between 97.1% and 102.82%.
        4,200원
        4.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, supercapacitors have attracted extensive attention due to their advantages such as fast charge and discharge rate, high power density and long cycle life. Because of its unique porous structure and excellent electrochemical properties, heteroatom-doped porous carbon (HPC) is deemed as a promising electrode material for supercapacitors. However, it is a great challenge to synthesize electrode materials with large surface area, ultra-high porosity and good electrochemical performance. In this work, two-dimensional conjugated microporous polymers (CMPs) containing ketones were synthesized by a simple one-step coupling reaction and used as carbon precursors. A series of samples (CMP-Ts) were prepared with the procedures of coupling reaction and carbonization. The optimized carbon material has high specific surface area (up to 2229.85 m2 g− 1), porous structure, high specific capacitance (375 F g− 1 at 0.5 A g− 1), and good cycling stability (capacitance retention of 98.8% after 1000 cycles at 5 A g− 1). Further, the supercapacitor has an energy density of 28.8 Wh kg− 1 at a power density of 5000 W kg− 1. This work lays a foundation for the preparation of carbon materials using microporous polymer as a precursor system, provides a new way of thinking, and demonstrates a great potential of high-performance supercapacitors.
        4,000원
        5.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sulfur and nitrogen co-doped carbon dots (NSCDs) were quickly synthesized by the microwave-assisted method from triammonium citrate and thiourea. NSCDs showed a quantum yield of 11.5% with excitation and emission bands at 355 and 432 nm, respectively. Also, a fluorescence quenching was observed in the presence of Pb(II) ions, and the as-synthesized CDs were used as a sensitive probe for detecting Pb(II) in water and food samples. The results showed the optimal conditions for Pb(II) determination were CDs concentration of 0.02 mg mL− 1 at pH 6.0–7.0 and an incubation time of 20 min. The relative fluorescence intensity of NSCDs was proportional to Pb(II) concentrations in the range of 0.029–2.40 and 2.40–14.4 μmol L− 1 with a correlation coefficient (R2) of 0.998 and 0.955, respectively, and a detection limit of 9.2 × 10– 3 μmol L− 1. Responses were highly repeatable, with a standard deviation below 3.5%. The suggested method demonstrates the potential of a green, fast, and low-cost approach for Pb(II) determination in water, tea, and rice samples with satisfying results.
        4,000원
        6.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen and phosphorous dual-doped carbon nanotubes (N,P/CNT) have been grown in a single-step direct synthesis process by CVD method using iron-loaded mesoporous SBA-15 support, as an electrode material for the energy storage device. For comparison, pristine nanotubes, nitrogen and phosphorous individually doped nanotubes were also prepared. The basic characterization studies clarify the formation of nanotubes and the elemental mapping tells about the presence of the dopant. Under three-electrode investigations, N,P/CNT produced a maximum specific capacitance of about 358.2 F/g at 0.5 A/g current density. The electrochemical performance of N,P/CNT was further extended by fabricating as a symmetric supercapacitor device, which delivers 108.6 F/g of specific capacitance for 0.5 A/g with 15 Wh/kg energy density and 250 W/kg power density. The observed energy efficiency of the device was 92.3%. The capacitance retention and coulombic efficiency were 96.2% and 90.6%, respectively, calculated over 5000 charge–discharge cycles.
        4,500원
        7.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The disposal of organic pollutants is one of the important research topics. Some of the studies in this field are based on the degradation of organic pollutants with a catalytic agent. The cobalt tetraoxide/peroxymonosulfate system is an important catalytic system used for the radical degradation of organic pollutants. To increase the catalytic efficiency of such reactions, graphitization of activated carbon used as a support solid and nitrogen doping to the carbon structure are commonly used methods. In this study, cobalt tetraoxide production, N-doping and graphitization were carried out in a single step by heat treatment of activated carbon doped with the phthlocyanine cobalt (II) complex. The catalytic performance of the catalyst/ peroxymonosulfate system was investigated by changing the pH, catalyst, and PMS concentration parameters on rhodamine B and 1,3,5 trichlorophenol, which were used as models. It was seen that the catalysts had 97% activity on rhodamine B in 16 min and 100% on 1,3,5 trichlorophenol in 6 min. It was observed that the catalysts continued to show high catalytic activity for five cycles in reusability studies and had a very low cobalt leaching rate. These results are in good agreement with previously published studies. In line with these results, the synthesized N-doped graphitic carbon/Co3O4 catalyst can be used as an effective catalyst for wastewater treatments.
        4,900원
        8.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of functional carbon materials using waste biomass as raw materials is one of the research hotspots of lithium-sulfur batteries in recent years. In this work, used a natural high-quality carbon source—coffee grounds, which contain more than 58% carbon and less than 1% ash. Honeycomb-like S and N dual-doped graded porous carbon (SNHPC) was successfully prepared by hydrothermal carbonization and chemical activation, and the amount of thiourea used in the activation process was investigated. The prepared SNHPC showed excellent electrochemical energy storage characteristics. For example, SNHPC-2 has a large pore volume (1.85 cm3·g− 1), a high mesoporous ratio (36.76%), and a synergistic effect (S, N interaction). As the cathode material of lithium-sulfur batteries, SNHPC-2/S (sulfur content is 71.61%) has the highest specific capacity. Its initial discharge-specific capacity at 0.2 C is 1106.7 mAh·g−1, and its discharge-specific capacity after 200 cycles is still as high as 636.5 mAh·g−1.
        4,600원
        10.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, hollow carbon spheres (HCS) have aroused great interests in the field of energy storage and conversion owing to their unique morphology, structure and other charming properties. Nevertheless, unsatisfactory electrical conductivity and relatively poor volumetric energy density caused by inevitable gaps between discrete carbon spheres greatly impede the practical application of HCS. In this work, for the first time we propose a novel dual-template strategy and successfully fabricate interconnected 3D hollow N-doped carbon network (HNCN) by a facile and scalable pyrolysis process. By systematical characterization and analysis, it can be found that HNCN is assembled by HCS and lots of mesoporous carbon. Compared to the counterparts, the obtained HNCN exhibits unique 3D interconnected architecture, larger specific surface area, hierarchical meso/macropore structure, higher structure defects, higher N doping amount and more optimized N configurations (especially for pyridinic-N and graphitic-N). As a result, these advantageous features endow HNCN with remarkably promoted electrochemical performance for supercapacitor and oxygen reduction reaction. Clearly, our proposed dual-template strategy provides a good guidance on overcoming the intrinsic shortcomings of HCS, which undoubtedly broadens their application in energy storage and conversion.
        4,000원
        11.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lead sulfide ( PbS ) nanocrystals anchored on nitrogen-doped multiwalled carbon nanotubes ( CNx ) have been synthesized employing an environmentally friendly and inexpensive wet chemistry process. CNx∕PbS composites have been examined by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. Theorical ab initio calculations have been developed to determine the samples structural, morphological and optical properties to explain the experimental evidences. The PbS nanoparticles exhibit of 4 nm to 27 nm particle size with a face-centered cubic crystal structure and are homogeneously distributed along the carbon nanotubes. The nitrogen-doped CNTs acts as binding sites for the PbS clusters as ab initio theoretical study suggests.
        4,000원
        12.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen energy is a promising source of renewable and clean energy for various industries, such as chemical, automobile, and energy industries. Electrolysis of water is one of the basic methods for the production of hydrogen energy. However, the high overpotential of the oxygen evolution reaction (OER) in water electrolysis has hindered the effective production of hydrogen using this method. Thus, the development of high-efficiency non-precious metal-based electrocatalysts for OER is extremely significant. In this study, we adopted a one-step hydrothermal method to fabricate Ni-based catalysts with N/Sdual doped graphene oxide/carbon nanotube (GO/CNT) supports using thiourea ( CH4N2S) and urea as the S source and the N source. It was observed that the amount of thiourea utilized in the synthesis of the catalyst affected the morphology, composition, and the electrochemical properties of the catalyst. For a GO/CNT-to-thiourea mass ratio of 1:10, the catalyst exhibited the highest activity, where the OER overpotential was 320 mV at a current density of 10 mA/cm2. This was attributed to the high specific surface area, high conductivity, and fast electron transport channels of the N/S-dual doped GO/ CNT composite. Furthermore, sulfurization of the Ni particles to form nickel sulfide played a significant role in enhancing the catalytic performance.
        4,000원
        13.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A promising approach to enhance catalytic performance of supported heterogeneous nano-metal catalysts is to uniformly disperse active nanoparticles on the support. In this work, N-doped carbon-modified graphene (G@NC) nanosheet is designed and prepared to anchor Pd–Fe bimetallic nanoparticles (Pd–Fe/G@NC). The N-doped carbon modification on graphene surface could construct a sandwich-like structure (G@NC), which not only prevented the re-stacking of graphene nanosheets but also provided confined space for stable anchoring of bimetallic Pd–Fe nanoparticles. Benefitted from the unique structural property and synergetic effect of metal Pd and Fe species, the as-obtained Pd–Fe/G@NC composite displays excellent catalytic activity toward 4-nitrophenol reduction reaction with a turnover frequency of 613.2 min− 1, which is far superior to that of the mono-metal counterparts (Fe/G@NC and Pd/G@NC). More importantly, Pd–Fe/G@NC catalyst also exhibits favorable catalytic performance in the reduction of other nitroaromatic compounds (nitrobenzene, 4-nitrotoluene, 4-chloronitrobenzene, and so on). In addition, Pd–Fe/G@NC can catalyze the oxidation of furfuraldehyde to furoic acid with a high yield of 88.64%. This work provides a new guide for rationally designing and developing advanced supported heterogeneous bimetallic catalyst.
        4,200원
        14.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since soil salinization imposes various adverse effects on plants, research on how to relieve salt stress from plants is extremely urgent. We synthesized a new type of cerium-doped carbon quantum dots by a hydrothermal synthesis method. Characterization shows that the carbon quantum dots have a small and uniform particle size, high stability, high water solubility and biocompatibility. Mung bean seeds were soaked in CDs:Ce solutions under a concentration gradient (0.25, 0.5, 1, 2, 3 mg/ mL) and germinated under salt stress (150 mM NaCl). Compared with salt stress, the addition of CDs solutions effectively enhanced the ability of plants to relieve salt stress. The relieving effect on mung bean plants was the most significant after treatment with 2 mg/mL CDs:Ce, and the main root length, plant height and leaf length in comparison with the case of salt stress increased by 83%, 80%, and 60%, respectively. Chlorophyll content, peroxidase activity, superoxide dismutase activity and catalase activity, total protein content increased by 90%, 77%, 76%, 77% and 76%, respectively, malondialdehyde and proline The content decreased by 83% and 77%. Inductively coupled plasma mass spectroscopy proved mung bean plants absorbed CDs:Ce, but the absorption of NaCl decreased by 21.8%. Fluorescence imaging showed CDs:Ce was absorbed by roots, and transferred from the vascular system and apoplastic pathways to stems and leaf veins, and mainly aggregated in intercellular gaps, the vascular system, leaf veins, cilia and stomata. Stereomicroscopy showed that CDs:Ce induction increased the stomatal opening by 15.7%, and improved metabolic efficiency and NaCl excretion from the plants. Hence, CDs:Ce shows great potential in protecting crops from abiotic stress.
        4,500원
        15.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The serendipitous uncovering of carbon dot (CQDs) as budding candidate of carbonaceous nanomaterial has become now one of the hot topics in the research of material science and technology. The unique features of CQDs such as photo-physical properties, excellent biocompatibility, ease of synthesis, good aqueous dispersity, high chemical stability, and accessible functional groups for further modification make them one of the promising competitors in biological, photonic and energyrelated applications. Although some review articles on CQDs have been published, they typically cover all areas of CQDs applications, and no particular evaluation on the advancement of doped CQDs (D-CQDs) has been reported so far. In this review, we demonstrated characteristic features of D-CQDs focusing on doping strategies, discussion on recently adopted various synthesis processes, its applications and its qualitative comparison with each other. The recently developed concept on understanding the structure and optical properties of D-CQDs are also briefly described followed by their application on various fields primarily concentrated on bio-imaging and sensing applications. We also speculate its use in a variety of intriguing fields and its perspectives in near future.
        6,300원
        16.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrochemical water splitting is an important process for next generation of eco-friendly energy systems. The oxygen evolution reaction (OER), which occurs at an anode during the process, requires efficient electrocatalysts to reduce activation energies. Although Ru- or Ir-containing materials show excellent electrocatalytic activities, their high cost is a critical drawback. Consequently, the development of efficient electrocatalysts composed of low-cost metal components is a great challenge. In this study, we develop a new route to produce a hybrid material (Fe–NC) containing Fe3C particles dispersed on the surface of N-doped carbon (NC) materials by heat treatment of a mixture of urea and Fe(II)Cl2(H2O)4. Microscopic analyses prove that the Fe3C particles are placed on the surfaces of thin NC materials. Additionally, various characterizations reveal that the particles contain Fe3C structure. Fe–NC shows good electrocatalytic properties with onset and overpotentials of 1.57 V and 545 mV, respectively, for OER in KOH electrolyte. This study suggests the possibility of the use of Fe3C- based composites as OER electrocatalysts.
        4,000원
        17.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, N/S co-doped carbon felt (N/S-CF) was prepared and characterized as an electrode material for electric double-layer capacitors (EDLCs). A commercial carbon felt (CF) was immersed in an aqueous solution of thiourea and then thermally treated at 800 oC under an inert atmosphere. The prepared N/S-CF showed a large specific surface area with hierarchical pore structures. The electrochemical performance of the N/S-CF-based electrode was evaluated using both 3- electrode and 2-electrode systems. In the 3-electrode system, the N/S-CF-based electrode showed a good specific capacitance of 177 F/g at 1 A/g and a good rate capability of 41% at 20 A/g. In the 2-electrode system (symmetric capacitor), the freestanding N/S-CF-based electrode showed a specific capacitance of 275 mF/cm2 at 2 mA/cm2, a rate capability of 62.5 % at 100 mA/cm2, a specific power density of ~ 25,000 mW/cm2 at an energy density of 23.9 mWh/cm2, and a cycling stability of ~ 100 % at 100 mA/cm2 after 20,000 cycles. These results indicate the N/S co-doped carbon felts can be a promising candidate as a new electrode material in a symmetric capacitor.
        4,000원
        18.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, a facile bottom–up approach for producing nitrogen-doped carbon quantum dots (N-CQDs) was carried out by the hydrothermal treatment of microcrystalline cellulose, in the presence of different nitrogen sources (blank/urea/ammonia water/ethanediamine(EDA)/Hexamethylenetetramine). The result showed that the fluorescence intensity and quantum yields (QYs) of N-CQDs with different nitrogen sources are all higher than that without nitrogen source. Compared with the other three nitrogen sources, N-CQDs prepared by EDA not only have the highest fluorescence intensity but also the largest QYs of 51.39%. Therefore, EDA was chosen as the nitrogen source to prepare N-CQDs. The obtained N-CQDs are uniform spherical particles with a diameter of 2.76 nm. The N-CQDs also exhibit excitation-dependent and long-wave emission properties. The emission range of N-CQDs is 470–540 nm. Moreover, N-CQDs as fluorescent agents successfully acted on purple LEDs (λem = 365 nm) to achieve white LEDs light emission. At the same time, a fluorescent thin layer chromatography plate was successfully prepared using N-CQDs, silica gel G and Sodium carboxymethylcellulose as raw materials. The separation trajectory of mixed sample of Sudan red III and kerosene on the fluorescent TLC plate is obviously clearer than that of the TLC plate.
        4,000원
        19.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this article, nitrogen (N) doped porous carbon nanofibers (N-PCNF) were prepared by carbonization of polymer-silica nanocomposite precursor, and its application for heavy metal ion removal was demonstrated. Carbon–silica composite nanofibers were obtained by carbonization of electrospun polyacrylonitrile (PAN)-silica nanofiber composites. Subsequent selective etching of silica porogen produced porous carbon nanofibers (PCNF). It was revealed by surface characterization with X-ray photoelectron spectroscopy (XPS) that the surface of the PCNF was nitrogen-doped because N atom from cyanide group in PAN chains remained in the hexagonal carbon structure. The use of the obtained N-PCNF for heavy metal ion ( Hg2+) removal was demonstrated using a simple adsorption test apparatus and 5, 10, 15, 20-tetraphenylporphine tetrasulfonic acid (TPPS) as an indicator. The N-PCNF showed a removal efficiency of 96 and 99% in 10 and 120 min, respectively, indicating a maximum heavy metal ion adsorption capacity at pH 7.0. In addition, heavy metal ion adsorption behavior was also analyzed using common adsorption isotherms. This article provides important information for future research activities regarding control over hazardous substances.
        4,000원
        20.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this report, we successfully prepared nitrogen-doped porous carbon (N-PC)/manganese dioxide ( MnO2) composite for a high-performance supercapacitor. X-ray diffraction data revealed the α-MnO2 phase. Transmission electron microscopy confirmed that the nanostructured α-MnO2 nanoparticles were coated on the surface of N-PC. The N-PC/α-MnO2 composite delivered a capacitance of 525.7 F g− 1 at the charging current of 1.0 A g− 1. The higher capacitance of the composite could be owing to the synergy of MnO2 and N-PC. Besides, the electrode exhibited a 14.7% capacitance loss after 6000 charge– discharge cycles at 10 A g− 1 indicating good electrochemical stability.
        4,000원
        1 2 3