검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 55

        21.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Free-standing hybridized electrode consisting of double-walled carbon nanotubes (DWNTs) and activated carbon have been fabricated for flexible supercapacitor applications. The xanthan-gum, used in our methodology, showed high ability in dispersing the strongly bundled DWNTs, and was then effectively converted to activated carbon with large surface area via chemical activation. The homogeneously dispersed DWNTs within xanthan-gum derived activated carbon acted as both electrical path and mechanical support of electrode material. The hybridized film from highly dispersed DWNTs and activated carbon was mechanically strong, has high electrical conductivity, and exhibited high specific capacitance of 141.5 F/g at the current density of 100 mV/s. Our hybridized film is highly promising as electrode material for flexible supercapacitors in wearable device.
        4,000원
        23.
        2018.05 구독 인증기관·개인회원 무료
        본 연구에서는 시판되는 탄소전극의 제조에 활용되는 활성탄의 형태가 아닌, 활성탄소섬유를 이용하여 축전식 탈염공정에 적용할 탄소전극을 제조하였다. polyvinylidene fluoride (PVDF)를 지지체로 사용하며 활성탄소섬유를 배합한 후 시판되는 그라파이트 시트에 캐스팅하여 탄소전극을 제조한 다음 염 제거 효율을 평가하였다. 활성탄소섬유의 입자 크기를 달리하였고 용매와 고분자 지지체 그리고 활성탄소섬유를 80 : 2 : 18, 80 : 5 : 15의 배합비율로 전극을 제조하였다. 축전식 탈염공정 운전조건으로 흡착전압, 시간, 탈착전압, 시간, NaCl 공급액의 농도와 유속 등을 달리하여 제조한 활성탄소섬유전극의 성능을 평가하였다.
        25.
        2018.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Various carbon aerogels (CAs) were prepared from polymerization of resorcinol and formaldehyde and applied as the electrode materials of an electric double layer capacitor (EDLC) with the aim of controlling the textural and electrochemical properties of CAs by the type of base catalyst and the ratio of resorcinol to catalyst (R/C). The CAs from NaHCO3 and KHCO3 with H+ ions had higher specific surface areas but exhibited lower electrochemical properties than those from K2CO3 and Na2CO3, which had more uniform pore size distributions. The electrochemical properties of Na2CO3 were superior to those of K2CO3 probably because the polarizing power of Na+ ions was higher than K+ ions. With an increasing R/C ratio, the pore sizes of CA showed a tendency to increase but the uniformity of the pore size distribution got worse. For the four base catalysts, the highest electrochemical property was obtained at the R/C ratio of 500.
        4,300원
        26.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas (645–2029 m2 g–1) with excellent pore volumes (0.27–1.30 cm3 g–1). The wellcondensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of 303 F g–1 in 1.0 M H2SO4 at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).
        4,000원
        27.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, magnetite (Fe3O4) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like Fe3O4 nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The Fe3O4/GCE was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the Fe3O4/GCE was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the Fe3O4/GCE. The electrocatalytic ability of Fe3O4 was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the Fe3O4/GCE exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of 0.09-47 μM with a correlation coefficient of 0.9919 and a limit of detection of 0.09 μM (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.
        4,000원
        28.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) precarbonized at 500–1000°C in N2 gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at 700°C, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above 700°C and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.
        4,200원
        29.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
        4,000원
        30.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
        4,000원
        31.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 유연성을 갖는 전극 제조를 위해 산 처리된 단일벽 탄소나노튜브 (Acid treated-SWCNTs)를 금이 코팅된 PET 기판 위에 스프레이 코팅하였다. 단일벽 탄소나노튜브가 가지는 단점을 보완하기 위하여 산 처리 공정을 이용하여 나노튜브에 작용기를 도입하여 분산성을 극대화 시켰 으며 전기화학적 특성을 향상 시켰다. 스프레이 기술을 이용하여 제조된 유연성을 갖는 단일벽 탄소나노 튜브 기반의 전극을 1 M의 황산 전해질에서 순환 전압 전류법, 임피던스 분광법 그리고 충·방전 시험을 통하여 전기화학적 특성을 분석 하였다. 그 결과, 응력을 가하지 않은 전극의 전기 용량값은 67 F․g-1로 측정 되었으며, 1000번의 충·방전 시험 후에는 전기 용량값이 63 F․g-1 (94 % 유지)로 감소하는 결과를 보였다. 이에 반하여, 탄소나노튜브 기반의 플렉시블 전극은 500번의 굽힘 시험 (bending test)과 6000 번의 충·방전 시험 후에는 초기의 전기 용량값 (67 F․g-1)이 유지되는 결과를 얻었다.
        4,000원
        32.
        2016.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by K2CO3 and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by K2CO3 activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of CTP/K2CO3 ratio, activation temperature, and activation period.
        4,000원
        33.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        3,000원
        34.
        2016.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Octahedral Co3O4/carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral Co3O4 grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral Co3O4/CNFs composites exhibit high photocurrent density (12.73 mA/m2), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial Co3O4, conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral Co3O4/CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.
        4,000원
        35.
        2016.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hydrogen is considered a potential future energy source. Among other applications of hydrogen, hydrogen-rich water is emerging as a new health care product in industrial areas. Water electrolysis is typically used to generate a hydrogen rich water system. We annealed 10AA carbon paper in air to use it as an electrode of a hydrogen rich water generator. Driven by annealing, structural changes of the carbon paper were identified by secondary electron microscope analysis. Depending on the various annealing temperatures, changes of the hydrophilic characteristics were demonstrated. The crystal structures of pristine and heat-treated carbon paper were characterized by X-ray diffraction. Improvement of the efficiency of the electrochemical oxygen evolution reaction was measured via linear voltammetry. The optimized annealing temperature of 10AA carbon paper showed the possibility of using this material as an effective hydrogen rich water generator.
        4,000원
        36.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Co-embedded graphitic porous carbon nanofibers(Co-GPCNFs) are synthesized by using an electrospinning method. Their morphological, structural, electrochemical, and photovoltaic properties are investigated. To obtain the optimum condition of Co-GPCNFs for dye-sensitized solar cells(DSSCs), the amount of cobalt precursor in an electrospinning solutuion are controlled to be 0 wt%(conventional CNFs), 1 wt%(sample A), and 3 wt%(sample B). Among them, sample B exhibited a high degree of graphitization and porous structure compared to conventional CNFs and sample A, which result in the performance improvement of DSSCs. Therefore, sample B showed a high current density(JSC, 12.88 mA/cm2) and excellent power conversion efficiency(PCE, 5.33 %) than those of conventional CNFs(12.00 mA/cm2, 3.78 %). This result can be explained by combined effects of the increased contact area between the electrode and elecytolyte caused by improved porosity and the increased conductivity caused by the formation of a high degree of graphitization. Thus, the Co-GPCNFs may be used as a promising alternative of Pt-free counter electrode in DSSCs.
        4,000원
        37.
        2015.05 구독 인증기관·개인회원 무료
        이온교환막이 결합된 축전식 탈염공정(Membrane capacitive deionization, MCDI)을 진행하기 위하여 양이온고분자로는 Sulfonated PPO(Poly(2,6-dimethyl-1.4-phenyl oxide)를 사용하였으며 음이온고분자로써 Aminated Polysulfone을 제조하여 전극 표면에 직접 코팅하여 사용하였다. 코팅여부는 SEM 사진을 통하여 확인하였으며, 성능을 알아보기 위하여 흡/탈착실험을 진행하였다. 유속(15, 25, 30 ml./min), 흡착시간(2, 3, 5, 7 min), 유입수의 농도(100, 200, 300, 500ppm)를 변화시켰는데 그 결과 유속은 느릴수록, 흡착시간은 길어질수록, 유입수의 농도가 낮을수록 염 제거 효율이 높게 나타났다.
        38.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbonate-type organic electrolytes were prepared using propylene carbonate (PC) and dimethyl carbonate (DMC) as a solvent, quaternary ammonium salts, and by adding different contents of 1-ethyl-3-methyl imidazolium tetrafluoroborate (EMImBF4). Cyclic voltammetry and linear sweep voltammetry were performed to analyze conducting behaviors. The surface characterizations were analyzed by scanning electron microscopy method and X-ray photoelectron spectroscopy. From the experimental results, increasing the EMImBF4 content increased the ionic conductivity and reduced bulk resistance and interfacial resistance. In particular, after adding 15 vol% EMImBF4 in 0.2 M SBPBF4 PC/DMC electrolyte, the organic electrolyte showed superior capacitance and interfacial resistance. However, when EMImBF4 content exceeded 15 vol%, the capacitance was saturated and the voltage range decreased.
        4,000원
        39.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for I3- ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current density (16.3mA/cm2), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).
        4,000원
        40.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study reports on the influenceof N-butyl-N-methylpyrrolidinium tetrafluoroborat (PYR14BF4) ionic liquid additive on the conducting and interfacial properties of organic solvent based electrolytes against a carbon electrode. We used the mixture of ethylene carbonate/dimethoxyethane (1:1) as an organic solvent electrolyte and tetraethylammo-nium tetrafluoroborate(TEABF4) as a common salt. Using the PYR14BF ionic liquid as additive produced higher ionic conductivity in the electrolyte and lower interface resis-tance between carbon and electrolyte, resulting in improved capacitance. The chemical and electrochemical stability of the electrolyte was measured by ionic conductivity me-ter and linear sweep voltammetry. The electrochemical analysis between electrolyte and carbon electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy.
        4,000원
        1 2 3