검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3,190

        101.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        20대를 대상으로 하였던 대학이 최근에는 운영방식, 설립목적, 교육대상이 다양화되었다. 대학 의 수에 비해 급격한 학령인구의 감소로 대학(과)은 신입생의 확보와 재학생의 중도탈락 최소화를 위해 최 선의 노력을 기울이고 있다. 본 연구는 2년제와 4년제 일반대학과 원격대학의 미용관련 학과 재학생을 대 상으로 전공선택동기와 소속감이 학업지속의도에 미치는 효과를 실증하기 위해 온라인 설문을 진행하였다. 일반대학 119명, 원격대학 113명에게 수집된 자료를 SPSS.28를 이용해 분석한 주요한 결과를 요약하면, 일반대학은 전공선택동기는 학업지속의도에 미치는 영향이 유의미하지 않았으나 소속감은 유의미한 정(+) 의 효과를 미쳤다. 또한, 소속감이 높아지면 외적동기는 학업지속의도를 유의미하게 상승시키는 조절효과 가 나타났다. 원격대학은 전공선택동기 중 내적동기와 소속감이 학업지속의도에 유의미한 정(+)의 효과가 나타났으며 전공선택동기와 학업지속의도의 관계에서 소속감의 조절효과는 유의미하지 않았다. 결과적으 로 재학생의 학업지속의도에 있어 일반대학은 대학(과)의 소속감이 주요했으며 원격대학은 내적동기가 주 요했다. 이러한 결과는 재학생의 중도탈락 예방을 위한 대학(과)의 효과적인 정책 수립을 위한 의미있는 자 료가 될 것으로 기대된다.
        4,200원
        102.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지구과학 II 및 한국지리 교과서는 ‘한반도의 지질’과 관련된 내용을 공통적으로 중요하게 다루고 있다. 이 연구 는 지구과학 II 및 한국지리 교과서에 제시된 ‘한반도의 지질’ 관련 내용의 차이를 분석하고, 차이가 있다면 최신 과학 지식과의 일치 여부를 비교하기 위한 것이다. 이를 위하여 2015 개정 교육과정에서 발간된 교과서 7종(지구과학 II 4종, 한국지리 3종)을 분석 대상으로 선정하고, 한반도의 지체구조, 지질 연대 자료 및 지질시대별 지질학적 특성의 설명 텍 스트에 대한 차이를 비교하였다. 분석 결과, 한반도의 지체구조와 관련된 용어, 명칭, 분포 범위에서 교과서 간에 불일 치 사례가 발견되었다. 한반도의 지질 연대 자료도 불일치 사례를 보였는데, 한국지리 교과서의 경우 오래된 자료를 인 용하여 최신 과학 지식과의 차이를 보였다. 또한, ‘한반도의 암석 분포’, ‘평안누층군의 특징’, ‘고생대의 대결층’에 대한 설명 텍스트에서 불일치 사례가 발견되었다. 지구과학 및 지리 교과는 중복되는 내용 요소가 많기 때문에 교과 간의 내용 차이를 최소화하는 노력이 필요하며, 이를 위해서는 최신의 과학 지식을 반영한 적절한 내용을 선정하여 교과에 관계없이 일관성 있게 제시하는 것이 중요하다.
        5,100원
        103.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main factor of biodiversity decline in major biological populations around the world is invasion of alien species. To protect native species, it is necessary to manage alien species. Recently, to eradicate ecosystem disturbance caused by alien species in Korea, many efforts have been made to capture individuals using nets and purchase captured individuals. However, there is no standard for classifying species due to the form of nest site or external characteristics of eggs of freshwater turtles. Thus, Mauremys reevesii eggs might be discarded due to mistaking as eggs of alien turtles. Based on more data, this study aims to compare and analyze external differences among eggs of Trachemys scripta elegans, Pseudemys concinna, and M. reevesii and use them as reference materials in the process of eradicating alien turtles. This study measured characteristics of eggs of the three turtle species. As a result of comparison, all variables of external characteristics of alien turtles and M. reevesii eggs showed significant differences. The shape of egg was also different, with eggs of T. scripta elegans and P. concinna showing a bicone shape and those of M. reevesii showing an ellipsoid shape. In conclusion, based on results of previous studies and the present study, eggs of M. reevesii, T. scripta elegans, and P. concinna are different in shape and structure. Thus, it is possible to distinguish between M. reevesii and invasive alien turtle using their eggs.
        4,000원
        104.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        스타트업은 10명 내외의 직원으로 구성되고 빠른 업무 진행을 위해 CEO와 직접 소통하는 경우가 많다. 또한, 직원 대부분이 소규모 공간에서 근무하기 때문에 모든 직원의 행동을 관찰할 수 있는 특성을 가지 고 있다. 이러한 환경은 CEO가 자신보다 어느 직원과 더 친밀한 관계를 형성하고 있는지 비교할 수 있는 데, 사회적 비교가 어떤 메커니즘을 통해 직원 행동에 영향을 미치는지에 대한 연구는 아직 초기에 머물 러 있다. Vidyarthi 등(2010)은 리더-멤버 교환관계의 사회적 비교(LMXSC)가 조직시민행동에 영향을 준다는 것을 밝히면서 LMXSC와 조직시민행동 간 메커니즘을 밝히는 것이 필요하다고 하였다. 이에 본 연 구는 사회 정체성 이론을 결합하여 LMXSC가 조직시민행동에 영향을 미치는 과정에서 자존감과 조직 동일시가 다중 직렬 매개 역할을 하는지 확인하고자 하였다. 연구 결과 첫째, LMXSC는 조직시민행동에 정적인 효과를 가지며, 자존감과 조직 동일시는 LMXSC와 조직시민행동 사이를 매개하였다. 둘째, 다중 직렬 매개 분석 결과 LMXSC와 조직시민행동 사이에 자존 감과 조직 동일시가 순차적으로 매개하는 것으로 나타났다. 본 연구는 LMXSC가 높은 직원은 자존감이 형성되고, 이는 조직 동일시를 거쳐 조직시민행동에 영향을 준다는 점을 밝힘으로써 창업자가 직원과 관 계를 맺을 때 고려해야 할 점과 인사 실무에서 직원 리더십 관리 및 개발, 정서 관리, 자발적 긍정 행동 증대에 필요한 인사이트를 제공한다.
        6,100원
        105.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 우리나라에서 수수-수단그라스 교잡종 (sorghum bicolor L.: SSH)에 대해 극단기상과 정상기상 간 생산량을 비교할 목적으로 수행하였다. SSH 데이터 (n=1,025)는 농촌진흥청의 신품종 적응성 실험보고서(1979 ―2019)로부터 수집하였다. 기상자료는 기상청으로부터 평균기온, 최저기온, 최고기온, 최대 강수량, 누적 강수량, 최대풍속, 평균풍속 및 일조시간을 10일 기준으로 계산하 여 수집하였다. 극단기상과 정상기상 간 구별을 위해 상 자 그림을 이용하여 탐색하였다. 극단기상과 정상기상 간 생산량 차이는 5% 유의수준 하에서 t-검정 및 ANOVA를 통해 확인하였다. 그 결과, 극단기상은 극단적으로 강한 바람을 동반한 봄 가뭄, 극단적으로 높은 강우량을 기록 하는 여름장마와 가을장마가 두드러졌다. 예측 생산량 피 해(kg/ha)는 각각 1,961―6,541, 2,161―4,526 및 508― 5,582로 나타났다. 본 연구는 우리나라의 SSH에 대한 취 약성 및 피해 산정에 도움이 되는 기초자료로서 극단기상 과 정상기상 사이의 생산량 차이를 확인하는 데 의의가 있다.
        5,100원
        106.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we aimed to compare the mycelial growth of Pleurotus ostreatus after medium supplementation with various amino acids at different concentrations to select the optimal medium nutrient composition for mycelial growth. The mycelial growth of P. ostreatus was investigated after adding four amino acids (tryptophan, threonine, methionine, and lysine) at 0.5% or 1% to the medium.The rate of P. ostreatus mycelial growthwas faster in the potato dextrose agar (PDA) medium supplemented with threonine at 0.5% or 1% than that of the control, whereas it was inhibited by tryptophan treatment. Supplementation of sawdust mediumwith all amino acids, except tryptophan, at 0.5% did not alter the mycelial growth, compared to the controls. However, addition of any amino acid to sawdust medium at a higher concentration (1%) inhibited the mycelial growth. The laccase acitivity of P. ostreatus mycelium cultured in PDA medium was the highest when threonine was added, and the lowest when tryptophane was added, consistent with the results of the mycelial growth. Therefore, the addition of threonine, methionine, or lysine to PDA medium at a concentration of 0.5-1%was effective for increasing the mycelial growth of P. ostreatus; however, it inhibited mycelial growth insawdust medium, suggesting that the effects of amino acids dependedon the medium nutrient composition.
        4,000원
        107.
        2023.05 구독 인증기관·개인회원 무료
        When self-disposing of radioactive waste, it is important to follow the acceptable concentration standards for each nuclide set by the Nuclear Safety and Security Commission (NSSC). Gamma-emitting nuclides can be easily analyzed with a simple pretreatment process, but beta-emitting nuclides require a chemical separation procedure to be analyzed for radiochemistry analysis. When analyzing betaemitting nuclides for the purpose of self-disposal, there may be difficulties in radiation detection after the chemical separation process. This is because the concentration of beta nuclides in the sample may be low and some of them may be lost during the chemical separation. Therefore, measurement method of gross-beta activity can be used instead of that of each nuclide to access the compliance of selfdisposal criteria. While a proportional counter is commonly used to measure gross-beta activity, liquid scintillation counting can also be used to measure gross-beta, and we plan to compare the results of both methods.
        108.
        2023.05 구독 인증기관·개인회원 무료
        Radionuclide analysis methods must be secured in the event of emergencies such as the discovery of unknown nuclear material or nuclear accidents in neighboring countries or Korea. Most institutions in Korea are in their early stages of radionuclide analysis method development and do not even have Radiation Controlled Areas where they can handle the samples safely. Some institutions such as the Korea Atomic Energy Research Institute have the ability to perform radionuclide analysis for nuclear facilities or verification of nuclear activities. In Korea, it is necessary to secure nuclide analysis technology to enable independent verification in times of emergency or need. This paper analyzes uranium as the target nuclide using alpha spectrometer and TIMS. Alpha spectrometer detects alpha particles emitted from uranium samples and measures the concentration of uranium isotopes. This method has a high selectivity that distinguishes it from other elements, and accurate measurements can be made even when uranium samples are mixed with other elements. In addition, there is minimal interference from other radioactive isotopes in the sample, and the sample preparation is simple, resulting in relatively short analysis times. In contrast, TIMS detects ionized uranium ions by heating the uranium sample. This method may have potential interference from other elements and may take relatively longer analysis times. However, TIMS has high sensitivity and accuracy and can detect various elements other than uranium, making it suitable for various analyses. Therefore, when analyzing uranium, it is recommended to select and use the appropriate device according to the purpose, as both alpha spectrometer and TIMS have their pros and cons. Furthermore, by using both devices in parallel, more accurate and reliable results can be obtained. This paper aims to compare the analysis methods of alpha spectrometer and thermal ionization mass spectrometry, which are widely used for nuclide analysis in unknown nuclear materials.
        109.
        2023.05 구독 인증기관·개인회원 무료
        One aspect of securing safety from the operation of Nuclear Power Plants (NPPs) is to evaluate the impact on residents at the facility’s exclusive area boundary to confirm that the radiological risk is below the allowable level. Normally, the risks from gaseous and liquid effluents are evaluated during the operation of facilities. Meanwhile, in order to be approved for the decommissioning plan, the environmental risks caused by activities during dismantling is also evaluated. Therefore, this study aims to investigate the exposure pathways considered in evaluating the risks to nearby residents from the operation and decommissioning of nuclear facilities and to examine the differences. The emission rate by radionuclide is calculated by evaluating the amount of leak from nuclear fuel during the operation of the facility through design data of the NPP. Each of the liquid and gaseous effluents is calculated, and the exposure dose received by nearby residents is calculated by considering the exposure pathways with these emission rates. In order to initiate the decommissioning of nuclear facilities, approval of the Final Decommissioning Plan (FDP) must be obtained. The FDP chapter shall describe the results of the environmental impact assessment of the decommissioning. It will not differ significantly in the exposure pathways during operation. However, the decommissioning of nuclear facilities is ultimately to remove Systems, Structures, and Components (SSCs) and to remove the regulation of the Nuclear Safety Act by ensuring that sites and remaining buildings meet the criteria for the license termination. In terms of release and reuse of nuclear facilities, the exposure dose to be considered in evaluating the dose can be considered for two main types: the site and the remaining building. The factors affecting the exposure pathways considered in assessing the environmental impacts considered in the operation and decommissioning of nuclear facilities are due to gaseous and liquid effluents. However, the difference should reflect the impact of NPP operations and decommissioning activities when evaluating the amount of radionuclides released by these effluents. Decommissioning should consider the impact after decommissioning, which is the effect of the receptor by radionuclides remaining on the site and in the remaining buildings. At this time, the effects of the source from the soil and the source from the surface of the building should be considered for the external and internal exposure pathways.
        110.
        2023.05 구독 인증기관·개인회원 무료
        As of 2023, there are a total of 24 nuclear power plants (NPPs) in operation in Korea, with 21 pressurized water reactors (PWRs) and three pressurized heavy water reactors (PHWRs). Korean NPPs discharge radioactive effluents into the environment every year. Radioactive effluents from NPPs contain various radionuclides and materials, including 3H, 14C, Noble gas, particulates, and iodine Among the radioactive effluents discharged from Korean NPPs, 14C is a pure beta emitter with a half-life of 5,730 years. The human body can inhale and ingest 14C to cause internal exposure. In addition, the amount of 14C present in the environment is decreasing, but the amount of 14C discharged from NPPs is increasing. 14C discharged to the environment can be inhaled and ingested by the public around NPPs through various pathways. For this reason, it is very important to monitor and manage 14C because it affects the dose of the public around NPPs. Therefore, this study compared and analyzed the average emissions of 14C discharged from PWRs and PHWRs during the recent 10 years (2012-2021). An average of the public dose due to 14C released from NPPs depending on the reactor types from 2012 to 2021 was also compared. It is inevitable to discharge radioactive effluents while operating NPPs. Korea Hydro & Nuclear Power (KHNP) manages and monitors radioactive effluents released into the environment. According to a survey and analysis of 14C discharged from PWRs and PHWRs and the average dose of the public over the recent 10-year (2012-2021) around Korean NPPs, 14C released from PWR accounted for 3.1% of the total discharge but accounted for more than 93.67% of the total public dose. In addition, 14C discharged from PHWRs accounted for 1.12% of the total discharge, but its resulting dose to the public accounted for more than 83.87% of the total public dose. As a result of analyzing the public dose due to 14C from 2012 to 2021, it was gradually increasing every year. Based on these results, monitoring and managing 14C discharge and its resulting doses to the public are important in the future.
        111.
        2023.05 구독 인증기관·개인회원 무료
        Airborne surveys are an essential analysis method for rapid response and contamination identification in the early event of a radiation emergency. On the other hand, airborne surveys are far from the ground, so it is necessary to convert the dose rate at a height of 1 m above the ground. In order to improve the accuracy of the analysis value, a lot of analysis of the measurement data is required. In our previous research, we developed MARK-A1, an instrument for rapid radiation aerial survey in high radiation environment, and MARK-M1, a multipurpose instrument for radiation detection. In this study, a large unmanned aerial vehicle (UAV) was used to conduct airborne surveys using three types of detectors in the Jeju Island environment. The NaI(Tl) detector uses one 3-inch scintillator (38 mm φ × 38 mm H), and the LaBr3 detector uses two 2-inch scintillators (25 mm φ × 25 mm H). The CZT detector uses a detector with dimensions of (15 mm × 15 mm × 7.5 mm). The UAV has a payload of 15 kg (J10, JCH systems Inc. Seoul, Korea). Three different detectors were operated at a constant height of 20 m, 30 m, and 50 m. The flight experiments were performed in the west near Jeju City. Dose rate conversion factors were used to convert the dose rate from the measured spectra, and hovering flights were conducted between 1 and 50 meters to derive altitude correction factors. In this paper, the data measured with each detector in the same area were compared and the differences were derived.
        112.
        2023.05 구독 인증기관·개인회원 무료
        After the Fukushima accident, significant amount of radioactively contaminated waste has been generated with 50~250 m3/day and stored in tanks of the Fukushima Daiichi nuclear power plant site. The contaminated water is treated by various treatment facility such as KURION, SARRY, Reverse Osmosis, and ALPS to remove 62 radioactive nuclides except H-3. For the contaminated water treatment process, massive secondary wastes such as sludge, spent adsorbent, and so on as by-product are being generated by the facilities. In Japan, to treat the secondary wastes, melting technologies such as GeoMelt, In-can vitrification and Cold Crucible Induction Melting vitrification are considered as a candidate technologies. In this study, the technologies were reviewed, and the advantage and disadvantage of each technology were evaluated as the candidate technologies for treatment of the secondary wastes.
        113.
        2023.05 구독 인증기관·개인회원 무료
        When decommissioning and operating nuclear power plants, a lot of radioactive waste in concentrated waste powder, slurry, sludge, and powder is generated. The radioactive waste, non-conformity for disposal, cannot be treated or disposed of, but is currently being stored instead. To dispose of the waste, the waste can be solidified by mixing with an appropriate solidification agent. However, when the solidification agent and powder particles are mixed as in the conventional method, the final volume of the waste form to be disposed of increases. In order to solve this problem, in this study, volume reduction was achieved, compared to the existing powder, by applying the roll compaction technology to mold the radioactive waste into compressed pellets. Soil, concrete, concentrate waste, and contaminated soil powder were used as test materials, and pellets were prepared under different operating conditions. Subsequently, a compressive strength test was performed to confirm the integrity and optimal process conditions of the manufactured pellets. However, in order to perform the compressive strength test, the upper and lower surfaces of the pellets must be horizontal, but the pellet has the shape of two tetrahedrons joined together. Hence, test specimens for measuring compressive strength were prepared by making a surface treatment jig. The compressive strength test showed a high strength of 5.20~28.20 MPa. The process conditions showing high compressive strengths were selected as the optimal process conditions. Finally, the volume reduction ratios were calculated by measuring the weight, density and volume of the manufactured pellets. The degrees of volume reduction of the manufactured pellets compared to the existing powder were checked. When the roll gap was 0 mm, the average reduction ratios of the test materials were 3.7 for the soil, 4.0 for the concrete, 4.6 for the concentrate waste, and 3.8 for the contaminated soil. When roll gap was 1 mm, the ratios were 2.7 for the soil, 2.9 for the concrete, 3.4 for the concentrate waste, and 2.8 for the contaminated soil. Therefore, from a conservative point of view (Roll gap = 1 mm), when powdered waste is formed into pellets, it means that the volume is reduced by 1/2.7 for soil, 1/2.9 for concrete, 1/3.4 for concentrated waste, and 1/2.8 for contaminated soil.
        114.
        2023.05 구독 인증기관·개인회원 무료
        Surface environmental factors such as climate change can affect the safety of the disposal system by changing groundwater recharge or flow. Therefore, it is important to identify surface environmental factors and hydrogeological factors to evaluate long-term changes in hydrogeological environment of a disposal system. In particular, evapotranspiration is an important to be considered because it loses 70% of rainfall and has a great effect on groundwater recharge. Evapotranspiration can be estimated using simple or complex models based on meteorological data. Meteorological data from January 2010 to December 2022 were collected from 44 Automatic Synoptic Observation Systems (ASOS) of the Korea Meteorological Administration (KMA), which observe factors necessary for calculating evapotranspiration. For the estimation of evapotranspiration through simple models, temperature-based models (Blaney-Criddle method, modified Blaney-Criddle method, Hargreaves-Samani method) and radiation-based models (Simple Abtew method, Makkink method, Prietley-Taylor method, Turc method, Solar radiation-Maximum temperature method) were used. The calculation of evapotranspiration through the complex model used the Penman-Monteith method, which is used as a standard model in the USA, Japan, and FAO. By comparing the evapotranspiration calculated by complex and simple model, methods with small errors were identified each region. In addition, long-term climate change scenarios were applied to confirm changes in long-term evapotranspiration in South Korea. The results of this study will be used to find alternative models in the case of missing data in the Penman-Monteith model, which requires a lot of meteorological data, and can be used as basic data for calculating groundwater recharge that can affect the disposal system in the future.
        115.
        2023.05 구독 인증기관·개인회원 무료
        Bentonite has been considered as a potential buffer material in the engineering barriers of highlevel radioactive waste disposal systems. The intrusion of groundwater and heat from the waste change the temperature of the bentonite, which can alter the hydraulic properties of the bentonite. In this study, temperature effects on permeability were observed in two Ca-type bentonites. Laboratory tests were conducted on two types of block that were compacted using Korean Gyeongju bentonite and bentonil-WRK at different dry densities. Permeability tests were conducted at three different temperatures, namely 30°C, 60°C, and 90°C, using deionized water. Moreover, comparison between two Ca-type bentonites is carried out.
        116.
        2023.05 구독 인증기관·개인회원 무료
        It is expected that around 576,000 bundles of CANDU spent nuclear fuels (SNF) will be generated from the four CANDU reactors located at the Wolsong site. The authors designed and proposed a reference disposal concept based on the KBS-3 type and KURT geological data in 2022. In addition, we have reviewed the literatures and selected four alternative disposal methods to develop the higherefficiency disposal concept than the reference concept since 2021. As known well, the most important safety functions of the geological disposal are containment and isolation, and the secondary function is retardation. A disposal canister covers the former, and buffer may do the latter. In this study, we design the engineered barrier systems for the four alternative concepts: (1) mined deep borehole matrix, (2) sub-seabed disposal, (3) deep borehole disposal, and (4) multi-level dispoal. Assuming total 10,000 tU of CANDU SNF, four different kinds of unit disposal module consisting of disposal canisters and compacted bentonite buffers are designed based on the technique currently available. Two alternative concepts, sub-seabed disposal and multi-level disposal, share the same unit module design with the reference concept in 2022. For all the alternative concepts, we assume that the density of the compacted buffer is 1.6 g/cm3. For the mined deep borehole matrix disposal, we introduce a disposal canister slightly modified from the Canadian NWMO canister with a capacity of 48 bundles. The thickness of a copper layer is changed to be 10 mm considering the long-term corrosion resistance. The buffer thickness around a disposal canister is 20 cm, and the diameter of a borehole is 100 cm. Two different kinds of buffer blocks are proposed for the easy handling of them. For the deep borehole disposal, a SiC-stainless steel canister is designed, and 63 bundles of CANDU SNF is emplaced in the canister. We expect that the SiC ceramic canister shows very excellent corrosion resistance and has a high thermal conductivity under the geological conditions. The deep borehole will be plugged with four layered sealing materials consisting of granite blocks, compacted bentonite, SiC ceramic, and concrete plugs.
        117.
        2023.05 구독 인증기관·개인회원 무료
        The burnup of spent fuel is one of the important management items that must be managed before storing the fuel in dry storage facilities, as well as for transportation and disposal in the future. Currently, the burnup of spent fuel is managed by calculating the design burnup at the time of design and measuring the real burnup using in-reactor measurement devices. Furthermore, to ensure the reliability of such data, the burnup of spent fuel can be measured using burnup measurement equipment to compare and analyze the data. In fact, KHNP is measuring the burnup of spent fuel using the burnup measurement equipment (SICOM-NG-FA) developed by ENUSA in Spain. The burnup measurement equipment analyzes the axial burnup profile of spent fuel using gamma and neutron detectors. Burnup measurement is performed by moving the spent fuel up and down inside the measurement equipment and measuring the burnup of the fuel surface facing the gamma and neutron detectors. This paper aims to compare the results of measuring the burnup of spent fuel on two sides versus four sides using the burnup measurement equipment.
        118.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2005년 7월 연구소기업 제도 시행 이후 연구소기업 설립이 빠르게 증가하면서 연구소기업은 공공기술사업화의 대표적인 모델이자 경로로 자리매김하게 되었다. 연구소기업의 양적 성장과 함께 공공기술사업화와 관련한 국가 정책, 기관 전략 등에 있어 연구소기업의 중요성도 증가하여 왔지만 지난 16년 간 연구소기업의 설립 및 성장은 시기별로 매우 다른 양상으로 진행되어 왔다. 본 연구에서는 양적 팽창기라고 할 수 있을 정도로 연구소기업 설립 (등록)이 급격히 증가하기 시작한 2014년 전후의 비교를 중심으로 지난 16년 간 연구소기업의 변화를 비교·분석하였다. 이를 위해 본 연구에서는 2014년 이후 연구소기업의 급격한 증가 원인을 정책, 제도, 창업환경, 성장환경 변화로 나누어 다각적으로 분석하고, 양적 팽창기 이후 연구소기업 변화가 연구소기업 성과 및 성장에 미친 영향을 분석하였다. 분석 결과 양적 팽창기 초기에는 연구소기업 관련 정책 변화와 이에 따라 시행된 연구소 기업 발굴·기획 지원 사업 등이 연구소기업 증가의 주요 요인으로 나타났다. 또한 2016년 이후의 연구소기업 설립(등록)의 급격한 증가는 산학연협력 기술지주회사의 확대, 기술지주회사의 투자 여건 개선 등과 같은 연구소기업 창업 환경 변화의 영향이 큰 것으로 나타났으며, 2019년 이후에는 공익법인 등 연구소기업 설립 주체의 확대와 강소특구 지정 등 제도 변화가 연구소기업 설립 증가에 영향을 미친 주요 요인이었다. 또한 양적 팽창기를 전·후로 하여 연구소기업 성과 및 성장 특성의 변화를 분석한 결과 연구소기업 등록 시점과 연구소기업 자본금 규모는 등록 이후 3년 간의 평균 매출액에 통계적으로 유의미한 영향을 미치는 것으로 나타났다. 이러한 결과는 2014년 이후 연구소기업의 급격한 증가와 함께 연구소기업의 중요 성이 커졌지만 한편으로는 양적 팽창기 이전과 비교하였을 때 연구소기업 특성에 변화가 있었으며, 규모별(소형, 중‧대형) 또는 성장 단계별 연구소기업 지원 체계 구축의 필요성이 더 커졌음을 보여준다.
        6,000원