검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 348

        61.
        2018.05 구독 인증기관·개인회원 무료
        Roller Compacted Concrete Pavement (RCCP) is placed by roller compaction of a mixture of less cement and unit water content and more aggregates and provides excellent early strength development with the help of interlocking of aggregates and hydration. The unit cement content of RCC pavements accounts for 85% of conventional pavements, with low drying shrinkage. As low drying shrinkage leads to smaller crack widths than ordinary concrete, RCC pavements can help elevate reflecting crack resistance if applied to a base layer of a composite pavement system. In a composite pavement with an asphalt surface laid over a concrete base, pavement temperature change is important in predicting pavement performance. As movement of the lower concrete layer is determined by temperature depending on pavement depth, temperature data of the pavement structure serves as an important parameter to prevent and control reflecting crack. Among the causes of reflecting crack, horizontal behavior of the lower concrete layer and curling-caused vertical behavior of joints/cracks are considered closely related to temperature change characteristics of the lower concrete course (Baek, 2010). Previous studies at home and abroad about reflecting crack have focused on pavement behavior depending on daily and yearly in-service temperature changes of a composite pavement (Manuel, 2005). Until now, however, studies have not been conducted on initial temperature characteristics of concrete in composite pavements where asphalt surface is placed over an RCC base. Annual temperature changes of in-service concrete pavements go up to 60 ℃, and those of asphalt overlays become around the twice at 110 ℃. This study evaluated initial crack behavior of composite pavement by investigating pavement temperature by depth of an RCC base and analyzing joint movement depending on change to temperatures of continuously jointed pavements. Findings from the study suggest that in composite pavements and asphalt overlays, time of laying asphalt has an important impact on crack behavior and reflecting crack.
        62.
        2018.05 구독 인증기관·개인회원 무료
        The objective of this study was to evaluate the effectiveness of various crack inducers to be used in the advanced reinforced concrete pavement (ARCP) by conducting yard tests. Some of cracks are induced in ARCP to reduce the stresses in steel bars and to form more uniformly spaced cracks so that the required steel bar amount can be decreased and at the same time the pavement performance can be improved. In this study, an experimental ARCP was constructed for the length of 22.4 m, width of 1.12 m, and thickness of 0.26 m. The anchor lugs were placed at both ends of ARCP to pretend continuities of the system. 8 crack inducers with a uniform spacing of 2.8 m were installed in different manners when placing concrete, so the test length of the experimental ARCP was 19.6 m. The variables of crack inducers included the shape, material, installed depth, and installing method. The basic shape of the crack inducer represented a round face and a flat opposite face with a height of 50 mm and a width of 10 mm. The slightly different shaped crack inducers were installed for inducing cracks at both ends of ARCP. The crack inducers were primarily made of glass fiber reinforced plastic (GFRP) but a crack was induced using a polyethylene sheet inducer. The installed depths of the crack inducers were 30, 40 and 70 mm to the top of the crack inducer from the pavement surface. Most crack inducers were preinstalled on the transverse steel bar locations before concrete pouring, but 2 crack inducers were installed just after concrete placement when concrete was still fresh. The temperature measurement sensors of i-Buttons and thermocouples were installed at the top, middle and bottom of slab to measure the temperature variations of slab. The displacement transducers were also installed at the crack locations to measure the crack width movements. The experimental results showed that the cracks were induced at all the locations where the crack inducers were placed. In addition to the induced cracks, just one crack was formed naturally. The crack patterns on the surface of pavement were all comparable. The crack width measurement data showed that there were slight differences in the crack width movements among the cracks but all the cracks including both the induced and naturally formed cracks moved little within a 0.1 mm range. Therefore, any type of the crack inducers employed in this study can be used to initiate cracks in ARCP.
        63.
        2018.05 구독 인증기관·개인회원 무료
        Domestic continuously reinforced concrete pavement has been built on a large scale on the Jungbu Expressway, which opened in 1987. Since then, there have been few application due to cost and construction difficulty. Currently, most of the expressway concrete pavements have been applied with jointed plain concrete pavement, but the interest in continuously reinforced concrete pavement has been increasing recently due to frequent premature failure in joints of JPCP. Accordingly, Korea Expressway Corporation has established design guidelines and details for continuously reinforced concrete pavements for expressway in 2014, based on the design method applied to the Jungbu Expressway, but incorporating foreign useful design methods. In terms of construction, pilot constructions were performed on Pyeongtaek~Jecheon Expressway Construction. The new design guidelines were applied to some sections of the Sangju~Yeongdeok Expressway Construction Project in 2016. This study conducted a survey and analysis of transverse cracks for one year after continuously reinforced concrete pavement construction in Sangju~Yeongdeok Expressway. This route was constructed with pavement thickness, base layer and longitudinal reinforcement according to domestic design guidelines. However, the transverse reinforcement was arranged differently according to the section. After construction, the transverse crack spacing was surveyed and the crack gauges were installed at the crack position to measure the movement. This compares the crack spacing according to the characteristics of longitudinal reinforcement and observes continuous movement of the crack width. The results showed that the crack spacing was more affected by the climate at the time of construction than the arrangement method of the transverse reinforcement. The crack width showed periodic changes according to the temperature change over 24 hours. However, due to seasonal changes, it showed a tendency of gradual increasing or decreasing in crack widths, and it was predicted that different measurement results will be shown depending on the time of crack width measurement. Generally, it is predicted that the crack spacing will be narrowed and the crack movement will tend to converge with the period after construction. This initial crack movement data is expected to be useful for comparing whether these predictions are valid.
        64.
        2018.05 구독 인증기관·개인회원 무료
        Tensile stress occurs and random crack develops in concrete pavement slab when it contracts by variation of temperature and humidity. The tensile stress decreases and the random cracks are minimized by saw cutting the slab and inducing the crack with regular spacing. The sawn or formed joint depth must extend to between 1/4 and 1/3 of the pavement depth to ensure the formation of a clean crack. The ‘Crack inducers (Triangular timber)’ have been installed at bottom of concrete slab to minimize concrete disturbance during initial age. In particular, it is often used to relatively thick airfield pavement compared to road. There are slabs of various thicknesses at the airfield, but the crack inducers are often designed to be installed uniformly without analyzed the joint behaviour to slab thickness. In this paper, the installation of crack inducer considering thickness variation is analyzed and applied. As a result, random cracks or joint freezing wasn’t occurred anywhere on the runway.
        65.
        2018.05 구독 인증기관·개인회원 무료
        This study evaluated the effect of steel slag and steel wool fibers (SWF) on self-healing performance of asphalt mixture. The microstructure and distribution of SWF in mixture were examined by a computerized tomography scan and image analysis program. Thermal conductivity was investigated using the thermal constant analyser. The heating rate and healing performance were measured by induction heating system. The results showed the uneven distribution and the agglomeration in the mixtures when the content of fibers exceed a certain dosage. It was found that the mix with steel slag had higher heating rate than the mix with normal aggregate; however, its healing performance was slightly lower because of the breaking of weak steel slag. Finally, the mechanical test results indicated that SWF can enhance the resistance and prolong the fatigue life of asphalt mixtures.
        66.
        2018.05 구독 인증기관·개인회원 무료
        A number of roller-compacted concrete pavements (RCCP) have been constructed without saw-cut joints in order to save construction cost. Then it will allow natural cracks to randomly occur at the early age after concrete placement. Crack spacing of unjointed RCCP is crucial to ensure an adequate crack width and load transfer across the cracks since large crack spacing will result in excessive crack width and reduce load transfer efficiency that may be cause faulting, excessive deflection, and further cracking in RCCP slab. Due to pavement thickness, climatic condition, and material properties, unjointed RCCP may have different natural crack spacing. In this study, an analytical approach to predict natural crack spacing of an unjointed RCCP was developed. An analytical method based on elastic theory to calculate axial restraint stress using a bilinear slab-subbase interfacial constraint assumption was conducted. Curling stress induced by temperature gradient through the depth of the slab was also considered. The analytical model incorporates the environmental effect, strength gain and modulus of elasticity, coefficient of thermal expansion, drying shrinkage, base type materials, and slab geometries. The predicted crack spacing results obtained from the predictive model were validated through field measured data. The results showed a good agreement compared with crack spacing measured in the field. Furthermore, the result from a sensitive analysis using proposed predictive model showed that crack spacing increased when thickness of RCCP increased. The predicted crack spacing results may be used as input parameters to estimate crack widths in unjointed RCCP under given climatic condition, and material properties. If estimated crack width is excessive and cannot maintain an adequate load transfer across the cracks, saw-cut joints with an appropriate spacing should be provided in order to minimize crack width, and to prevent future cracking of RCCP leading to better performance.
        69.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to improve the durability by solving the crack problem of the steering gearbox bracket welded to the frame assembly. For the exact and effective analysis, we use charac- teristic(fishbone) diagram from the viewpoint of 4M1E. Through this analysis it was identified two kinds of problems, and develop improvement plan for it. Verification tests must be performed to confirm the improvement. So, the test method for steering gearbox bracket improvement was newly established by referring to similar case. As a result of the tests for verification, the stresses at crack point are decreased and the durability was improved about 2.6 times compared with product before improvement.
        4,000원
        70.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서 페리다이나믹 이론 모델을 이용하여 준정적하중과 동적 하중, 균열전파와 분기균열 패턴 그리고 등방성재료, 직교 이방성 재료의 균열 진전 해석 등 다양한 조건을 고려한 전산 시뮬레이션을 수행하여 그 적합성을 검토하였다. 초기 균열은 없지만 중심에 홀이 있는 등방성 재료, 초기 균열이 존재하는 등방성 및 이방성 재료에 대한 전산 시뮬레이션이 수행되었다. 조정 동적 완화 기법이 사용되어 준정적 하중을 모사하였고, 이방성 재료 해석에서는 고전 연속체 역학과 페리다이나믹의 변형률 에너지를 고려한 균질화 방법이 사용되었다. 균열 전파와 분기 균열이 성공적으로 확인되었으며 파괴 거동의 시작과 그 방향 역시 페리다이나믹 이론으로 확인되었다. 페리다이나믹을 균질화 방법을 사용하여 비교적 복잡한 이방성 재료에 적용한 경우 역시 실험 결과 값과 비교하여 검증하였다.
        4,000원
        71.
        2018.04 구독 인증기관 무료, 개인회원 유료
        Crack in concrete surfaces is one of the earliest signs of decomposition of the essential structure and constant exposure will cause serious damage to the structure and environment. In most of the safety assessment and fracture mechanic applications proposed that these cracks and defects eventually will grow and will have potential lead to in-service failure. Crack in concrete surfaces is one of the earliest signs of decomposition of the essential structure and constant exposure will cause serious damage to the structure and environment. Currently, non-destructive methods are getting popular in the field of inspecting defects in structure and one of them in trends is that using the thermographic image to detect hidden effects. However, the accuracy of the thermal camera, also called resolution, is highly dependent on camera variables such as lens, detector, sensitivity etc. Also, the most important question that needs to be answered for this research is what happens to the image in fog, rain or other climatic conditions where the camera detects crack which exceptionally smaller than most thermographic applications detects. This paper investigates the accuracy of thermal images obtained by the thermal camera under various weather condition and aims at providing information about optimum choice of environmental condition where the more favorable thermal images can be obtained and increase survey reliability and accuracy of the analysis.
        3,000원
        72.
        2018.04 구독 인증기관 무료, 개인회원 유료
        Due to the sewer induced ground subsidence, there is an increasing demand for the advanced visual inspection technique for the existing sewer pipe structures. This study aim to develop a new condition assessment method using visual inspection device with automatic crack extracting and real-time gas monitoring systems for large diameter glass-fiber reinforced plastic sewer pipes. In this paper, a high-precision image capturing system that automatically extracts cracks in the large-diameter sewer pipes and sewage culverts with a diameter of 1,000 mm or more, and a real-time gas detection sensor for investigator safety were considered. By analyzing the module technology of the visual inspection device, the test device and their software for system integration were developed. It is expected that the developed technique inspecting conditions of the GFRP sewer pipes using the proposed visual inspection device in this study can be effectively used for various types of underground structures in the future.
        3,000원
        73.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Deep learning techniques have been studied and developed throughout the medical, agricultural, aviation, and automotive industries. It can be applied to construction fields such as concrete cracks and welding defects. One of the best performing techniques of deep running is CNN technique. CNN means convolutional neural network. In this study, we analyzed crack recognition of sewer with low recognition. Deep learning is generally more accurate with deeper layers, but analysis cost is high. In addition, many variations can occur depending on training options. Therefore, this study performed many parametric studies according to the variations of training options. When analyzed with appropriate training options, the accuracy was over 90% and stable results were obtained
        4,000원
        77.
        2017.10 구독 인증기관·개인회원 무료
        This study evaluates the healing performance of asphaltmixture via microwaves heating method. Three different conductive additive types with various percentages were used, includingsteel wool fibers (SF), carbon fibers (CF), and graphite (G). The healing performance of asphalt mixture wasinvestigated through 10 damage-heal cycles of semi-circular samples using three-point bending test. The infraredcamera was also employed to recordthe heat transmitting in the test samples. The test results indicated that the healing effectiveness reduced after every healing cycles. It was found that microwave radiation provided great healing performance for almost all test samples. Among all types of conductive additives, SF mixtures achieved the highest healing performance with the healing level of higher than 50 percent after 10 cycles. However, microwaves heating may promote the faster aging of asphalt binder at late cycles which lead to the brittle behavior of samples. Finally, homogenous mixing is a critical factor to avoid the cluster formation of conductive additives which causes the overheating of asphalt binder.
        78.
        2017.10 구독 인증기관·개인회원 무료
        최근 건설재료의 자가치유 기술에 대한 많은 관심을 보이고 있으며, 유럽의 배수성 포장에 자가치유 아스팔트 포장 기술과 배수시설에 박테리아를 이용한 자가치유 콘크리트를 개발하고 있다. 본 연구에서는 유도가열 장치를 이용한 자가치유 아스팔트 포장의 자가치유 성능을 평가하고자 하였다. 스틸섬유를 아스팔트 포장에 혼입하여 아스팔트 포장을 만든 후 3점 피로균열 시험으로 균열을 유도하였다. 유도가열 장치를 이용하여 가열한 후 2-3시간의 휴지기간을 두어 3점 피로균열 시험을 다시 수행하여 자가치유 가능성을 평가하였다. 일반 골재뿐만 아니라 스틸글래그로 아스팔트 혼합물의 가열성능과 자가치유 성능도 평가하였다. 스필섬유의 분포상태를 분석하기 위하여 마이크로 CT-Scan장비를 이용하여 촬영하였다. 시험결과 스틸섬유를 이용하여 제작한 아스팔트 혼합물의 자가치유 가능성이 있었으며, 자가치유 성능정도를 분석하여 최적의 스틸섬유함량을 결정하였다. 다양한 조건에서 자가치유 성능을 평가하였으며, 매우 효과적인 것으로 나타났다
        79.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The fracture of mechanical structure is caused by internal cracks in the material. Particularly, the fracture can also be seen to happen under the stress that is lower than yield strength in case of high strength steel because of the crack happening from the defect inside the material. In this study, high strength steel with four holes near the center crack were designed by angle and fatigue experiments, and the simulation analyses to verify the experimental results were carried out. As the results of this study, the crack growth rates are shown to be 0.000485, 0.000434 and 0.000422 respectively at the inclined angles of center crack as 22.5°, 45° and 67.5°. The maximum deformation energies become 0.0848mJ, 0.0603mJ and 0.0582mJ respectively at the inclined angles of center crack as 22.5°, 45° and 67.5°. It is thought that this study result can be utilized as the basic data at the study on the material existing with the defects of crack and hole.
        4,000원
        1 2 3 4 5