검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 65

        3.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pregnancy-associated plasma protein-A (PAPP-A) is known as an important biomarker for fetal abnormality during first trimester and has a pivotal role in follicle development and corpus luteum formation. And also, it is being revealed that an expression of PAPP-A in various cells and tissues such as cancer and lesion area. PAPP-A is the major IGF binding protein-4 (IGFBP-4) protease. Cleavage of IGFBP-4 results in loss of binding affinity for IGF, causing increased IGF bioavailability for proliferation, survival, and migration. Additionally, PAPP-A can be used as a promising therapeutic target for healthy longevity. Despite growing interest, almost nothing is known about how PAPP-A expression is regulated in any tissue. This review will focus on what is currently known about the zinc metalloproteinase, PAPP-A, and its role in cells and tissues. PAPP-A is expressed in proliferating cells such as fetus in uterus, granulosa cells in follicle, dermis in wound, cancer cells, and Sertoli cells in testis. They have common characteristics of proliferation faster than normal cells with stimulating IGFs action and inhibiting IGFBPs. The PAPP-A functions and expression studies in livestock have not yet been conducted much. Further studies are needed to use PAPP-A as a marker for healthy longevity in animal science.
        4,000원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Depression is one of the most important psychiatric disorders worldwide. Most depression-related data mining and machine learning studies have been conducted to predict the presence of depression or to derive individual risk factors. However, since depression is caused by a combination of various factors, it is necessary to identify the complex relationship between the factors in order to establish effective anti-depression and management measures. In this study, we propose a methodology for identifying and interpreting patterns of depression expressions using the method of deriving random forest rules, where the random forest rule consists of the condition for the manifestation of the depressive pattern and the prediction result of depression when the condition is met. The analysis was carried out by subdividing into 4 groups in consideration of the different depressive patterns according to gender and age. Depression rules derived by the proposed methodology were validated by comparing them with the results of previous studies. Also, through the AUC comparison test, the depression diagnosis performance of the derived rules was evaluated, and it was not different from the performance of the existing PHQ-9 summing method. The significance of this study can be found in that it enabled the interpretation of the complex relationship between depressive factors beyond the existing studies that focused on prediction and deduction of major factors.
        4,300원
        5.
        2021.06 구독 인증기관 무료, 개인회원 유료
        Salivary glands are exocrine glands that secrete saliva into the oral cavity, and secreted saliva plays essential roles in oral health. Therefore, maintaining the salivary glands in an intact state is required for proper production and secretion of saliva. To investigate a specific signaling pathway that might affect the maintenance of mouse submandibular gland (SMGs), RNA sequencing was performed. In SMGs, downregulated expression patterns of Rho-associated protein kinase (ROCK) signaling pathway-related genes, including Rhoa, Rhob, Rhoc, Rock1, and Rock2, were observed. Gene expression profiling analyses of these genes indicate that the ROCK signaling pathway is a potential signal for SMG maintenance.
        3,000원
        6.
        2020.03 구독 인증기관 무료, 개인회원 유료
        Enamel knot (EK)—a signaling center—refers to a transient morphological structure comprising epithelial tissue. EK is believed to regulate tooth development in early organogenesis without its own cellular alterations, including proliferation and differentiation. EKs show a very simple but conserved structure and share functions with teeth of recently evolved vertebrates, suggesting conserved signaling in certain organs, such as functional teeth, through the course of evolution. In this study, we examined the expression patterns of key EK-specific genes including Dusp26 , Fat4, Meis2, Sln , and Zpld1 during mice embryogenesis. Expression patterns of these genes may reveal putative differentiation mechanisms underlying tooth morphogenesis.
        4,000원
        7.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        미토콘드리아는 세포질 칼슘 항상성 및 ATP 생산에 중요한 역할을 하는 세포 소기관으로 이러한 미토콘드리아의 기능은 성숙과 수정 그리고 배 발달에 매우 중요한 역할을 한다. 미토콘드리아 칼슘 축적은 기능장애를 일으킨다. 그러나 돼지 체외성숙란 및 수정란에서 미토콘드리아 칼슘 변화의 관련성에 관한 연구는 보고된 적이 없다. 본 연구의 목적은 미토콘드리아 칼슘 지시자로 알려진 Rhod-2 염색을 이용하여 성숙란 및 수정란에서 미토콘드리아 칼슘 축적의 변화를 확인하였다. 형태학적 모습의 기준을 통해 난구세포의 세포층과 세포질의 균질도를 바탕으로 G1과 G2로 나누어서 체외성숙을 진행하였다. 이후 두 그룹에서 핵 성숙율을 비교하였을 때, G2가 G1에 비해 낮게 나타났다(p<0.001). 돼지 체외성숙란 및 수정란에서 평균적인 Rhod-2 spot 의 수는 G1보다 G2에서 더 많이 나타났다(6시간째 체외수정란: p<0.05). 다음으로 Rhod-2 spot 수에 따른 난모세포의 비율을 확인하기 위해 Rhod-2 spot 의 수를 4개의 군(n<10, 10≤n<20, 20≤n<30, 그리고 30≤n)으로 나누어 해당 난모세포의 비율을 확인하였다. 체외성숙란 및 체외수정란 모두 G1이 G2에 비해 10개 미만(n<10)인 Rhod-2 spot 의 수를 가지는 난모세포가 많았으며, 체외수정란에서는 유의적으로 높았다(p<0.05). 마지막으로 체외성숙란 및 수정란에서 Rhod-2 intensity 값을 측정하여 두 그룹을 비교하였을 때, G2가 G1에 비해 유의적으로 높은 것을 확인 할 수 있었다(성숙란; p<0.001 그리고 수정란; p<0.05). 본 연구의 결과를 토대로 돼지에서 미성숙 난포란의 형태학적인 품질은 체외성숙 및 체외수정 과정 동안 미토콘드리아 내 칼슘 축적과 관련이 있음을 확인하였다.
        4,000원
        8.
        2018.12 구독 인증기관 무료, 개인회원 유료
        수온의 변화는 어류의 거의 모든 생리학적 부분에 영향을 미친다. 기후 변화로 인한 수온의 상 승은 어류에게 물리적 피해를 줄 수 있다. 이 연구는 최적의 수온(15°C)보다 높은 수온(20°C)에 서의 대서양 연어의 건강상태를 평가하기 위해 수행하였다. 간 조직은 열 적응에 중요한 대사 기능을 발휘하기에 본 연구에 간 조직을 사용하였다. 생체지표유전자의 개발을 위한 분석 방법 으로는 NGS RNAseq 방법을 사용하였고, 생체지표유전자의 발현 양상을 관찰하기 위한 분석 방 법으로는 RT-qPCR을 사용하였다. NGS RNAseq 분석을 통해 1,366개의 차별적 발현 유전자를 확인하였으며, 그 중에서 880개의 증가하는 유전자와 486개의 감소하는 유전자를 확인하였다. 생체지표유전자로는 heat shock protein 90 alpha (Hsp90α), heat shock protein 90 beta (Hsp90β) 및 cytochrome P450 1A (CYP1A)을 선정하였는데 이들 유전자는 NGS RNAseq 분석에서 수온의 변화에 민감하게 반응하는 유전자들이었다. 이들 유전자의 RT-qPCR을 통한 발현 양상은 NGS RNAseq 분석과 유사하게 나타났다. 이 연구의 결과는 다른 어종에도 적용할 수 있으며, 산업 적으로도 유용하다고 생각된다.
        4,000원
        9.
        2018.11 구독 인증기관·개인회원 무료
        The transcription factor POU5F1, also known as OCT4 plays critical roles in maintaining pluripotency during early mammalian embryonic development and in embryonic stem cells. It is important to establish an OCT4 promoter region-based reporter system to study pluripotency. However, there is still a lack of information about the porcine OCT4 upstream region. To improve our understanding of the porcine OCT4 regulatory region, we identified conserved regions in the porcine OCT4 promoter upstream region by sequence-based comparative analysis using various mammalian genome sequences. The similarity of nucleotide sequences in the 5' upstream region was low among mammalian species. However, the OCT4 promoter and four regulatory regions, including distal and proximal enhancer elements, had high similarity. The putative transcription factor binding sites in the Oct4 5' upstream region nucleotide sequences from mice and pigs also differed. Some of these genes are related to pluripotency, and further research will allow us to better understand the differences in species-specific pluripotency. Next, a functional analysis of the porcine OCT4 promoter region was conducted. Luciferase reporter assay results indicated that the porcine OCT4 distal enhancer and proximal enhancer were highly activated in mouse embryonic stem cells and embryonic carcinoma cells, respectively. Similar to OCT4 upstream-based reporter systems derived from other species, the porcine OCT4 upstream region-based reporter constructs showed exclusive expression patterns depending on the state of pluripotency. This work provides basic information about the porcine OCT4 upstream region and various porcine OCT4 fluorescence reporter constructs, which can be applied to study species-specific pluripotency in early embryo development and the establishment of embryonic stem cells in pigs. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032256).
        10.
        2018.11 구독 인증기관·개인회원 무료
        Polo-like kinase 1 (Plk1) has multiple roles in somatic cell and mammalian oocyte division. In mice, Plk1 distributes to the centromeres from prophase to anaphase and compose spindle apparatus in mitosis stages. Somatic cell nuclear transfer (SCNT) has diverse advantages. However, low cloning efficiency of SCNT procedure causes difficulty to application. The causes of this low efficiency are still unclear. However, they are attributed to the cumulative results of several biological and technical factors. In this study, Plk1, a biological factor, was investigated. B6D2F1 mice (7 weeks old) were superovulated with 10 IU of pregnant mare’s serum gonadotropin and 9 U of human chorionic gonadotropin (HCG) 48 hr later. The oocytes were collected 14 hr after HCG injection and cultured on potassium simplex optimized medium. The BI2536, Plk1-specific inhibitor, was used to understand the influence of Plk1. Also, the embryos were assessed by immunofluorescence. All BI2536-treated embryos failed to the first mitotic division. It showed Plk1 has a critical role in the first mitotic division of the mouse embryo. Moreover, there were significant differences between the control and SCNT embryos in the patterns of Plk1. All SCNT embryos which failed 2-cell development presented incorrect positioning and low expression of Plk1. On the other hand, the control embryos which failed to 2-cell division showed only low expression of Plk1. Taken together, this results demonstrate that Plk1 is critical for successful mitotic division of mouse embryos. Also, correct localization of Plk1 has crucial effect in the development of murine SCNT embryos.
        11.
        2018.10 구독 인증기관·개인회원 무료
        Honey bee, Apis mellifera L., have been widely used as a model organism for biological science because of its highly developed sociality, specialized labor division and passive population management. In order to examine the expression patterns of genes putatively involved in social development in honey bee, quantitative real-time PCR (qRT-PCR) that has been widely used to investigate the expression level of target gene can be used in honey bee study. However, the selection and validation of optimal reference genes is a crucial step prior to running qRT-PCR. In the present study, therefore, the seasonal expression stability of five candidate reference genes in the abdomen of forager and nurse was investigated using three programs (geNorm, NormFinder and BestKeeper), and selected reference genes were validated by the normalization of expression level of vg encoding vitellogenin. Although three programs revealed slightly different gene stability values, overall the combination of two genes (rpS18 and gapdh encoding ribosomal protein S18 and glyceraldehyde-3-phosphate dehydrogenase, respectively) was resulted in the most suitable use for normalization of the target gene in forager. However, a single gene, either rpL32 or rpS18 in the nurse or either rpL32, rpS18, or gapdh in the comparison between foragers and nurses, were suggested to be applied for normalization of seasonal and labor-specific gene expression by qRT-PCR.
        12.
        2018.04 구독 인증기관·개인회원 무료
        Honey bee has been widely used as a model insect for biological sciences because of its sociality and specialized labor division. For the investigation of the seasonal and labor-dependent expression patterns of genes putatively involved in its sociality, quantitative real-time PCR (qRT-PCR) can be applied to quantify gene expression level and selection of reliable reference gene(s) for normalization is an accurate step. In this study, using three softwares (geNorm, NormFinder and BestKeeper), we evaluated seasonal expression stabilities of four reference genes that have been widely used for qRT-PCR in forager and nurse heads. Among four candidates, two genes, rpS18 and gapdh, were suggested to be the optimal reference genes for qRT-PCR.
        14.
        2017.05 구독 인증기관·개인회원 무료
        The nature of molecular mechanisms governing embryo development is largely unknown, but recent reports have demonstrated that proper execution of programmed cell death is crucial for this process. The main objective of this study is to examine the mode of programmed cell death during nuclear transfer embryos development in porcine. In particular, the relative employment of two major pathways in programmed cell death; e.g. apoptosis (type I) and autophagy (type II) was compared. Oocytes use in the study was matured in vitro in the presence of 10% FBS maturation medium. After nuclear transfer embryos were cultured for each programmed cell death control factor [Cysteamine(Cyst : 0.4mM), 3-methyladenine(3MA : 2.5mM) and Rapamycin(RP : 100nM)] in TCM-199 medium supplemented with 0.1% BSA. In this study results of among the blastocysts development in 3MA; PCNA, MAP1LC3A and ATG5 RNA gene expression level increased in the order of IVF<Cyst < 3MA < RP. However Casp-3 and TNF-r RNA gene expression level decreased in the order of IVF < 3MA and RP< Cyst. The expression of mTOR showed a pattern opposite to that of MAP1LC3A. That is, its expression was the lowest in Cyst group. And next experiments analysis of MMP expression patterns. Analysed this MMPs enzyme activation to evaluate the effectiveness of high quality brastocyst culture in porcine. In this results of the enzymatic activity of MMP-2 and MMP-9 was assessed in culture, the level of active MMP-9 was higher expression in the medium of each 3MA and RP treatment group, with the level of another treatment group being relatively higher. These results suggest that the autophagy activation culture medium is more effective for stable and innovative nuclear transfer embryos development.
        15.
        2017.05 구독 인증기관·개인회원 무료
        The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish pheomelanin. The melanogenesis-associated genes controlling pigmentation act as a complex and interact with each other to cause phenotypic and genotypic variations in cattle. That the MC1R genotype of Korean native cattle with dark muzzle was e/e or E+/e, while the genotype of Korean native cattle with light muzzle was E+/E+, which is a variant of the MC1R genotype in the Korean native cattle. Especially, the MC1R expression type is shows how much pigmentation, important factor in deciding its status in the coat and nose colours. However, information regarding the coat or nose colours-associated gene regulation of korean cattle is not yet unknown. Therefore, in this study was to investigate the expression patterns of melanogenesis-associated genes in black dot nose(korea brindle cattle) and normal nose(korea native cattle). Using microarray clustering and real-time polymerase chain reaction techniques, we analysed that the expression of genes involved in the mitogen-activated protein kinase (MAPK) and Wnt signaling pathways is distinctively regulated in the dark and light muzzle tissues. Differential expression of tyrosinase was also noticed, although the difference was not as distinct as those of MAPK and Wnt. We hypothesize that emphasis on the MAPK pathway in the Korea brindle cattle induces eumelanin synthesis through the activation of cAMP response elementbinding protein and tyrosinase, while activation of Wnt signaling counteracts this process and raises the amount of pheomelanin in the native cattle. Regarding the increasing interest in the genetic diversity of cattle stocks, genes we identified for differential expression in the brindle cattle vs. native cattle may serve as novel markers for genetic diversity among cows based on the coat and muzzle color phenotype.
        18.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Alteration in ion channel or transporter expression levels affects cell volume which is produced by movement of water and ion across the plasma membrane. In particular, aquaporin (AQP) channels among ion channels play a crucial role in movement of water across the cell membrane. This study was performed to identify whether AQP expression is changed in bovine follicular cystic follicles using microarray, RT-PCR and Western blotting analyses. In microarray data, AQP4 expression was decreased, whereas AQP7 was increased in cystic follicles. Additional experiments were focused on the AQP7 expression increased in cystic follicles. The microarray data was confirmed by semi-quantitative polymerase chain reaction (PCR) and Western blot analysis. AQP7 mRNA and protein expressions were significantly increased in the cystic follicles (p<0.05). Application of estrogen (10 μg/ml) to bovine ovarian cells showed a trend of increase in AQP7 expression. From these results, we suggest that the increase in AQP7 expression in cystic follicles may play an important role in movement of water in bovine ovary. In addition, AQP7, a aquaglyceroporin permeating water and glycerol, could be a good target in development of methods for the cryopreservation of bovine ovary.
        4,000원
        19.
        2014.12 구독 인증기관 무료, 개인회원 유료
        Cows may suffer impaired ovarian function, often accompanied by reduced conception rates and increased embryonic loss. Cystic ovarian disease (COD) is one of the most frequently diagnosed gynecological findings in dairy cattle. It causes temporary infertility and is likely to affect reproduction as well as production parameters in cattle. Therefore, the purpose of this study was to determine the expression patterns of apoptosis (Bcl-2, Bax), implantation (E-cadherin) and immune related proteins (TNF-α, IL-10) in uterine endometrium of Hanwoo (Korean native cattle) with ovarian cyst and normal ovarian follicles. In the Western blot analysis, the expression of anti-apoptotic Bcl-2 protein was significantly higher in endometrium with normal ovarian follicles, whereas expression of pro-apoptotic Bax protein was significantly lower. Also, the expressions of E-cadherin and TNF-α proteins were significantly higher in uterine endometrium with normal ovarian follicles. On the other hand, the expression of IL-10 protein was significantly lower in uterine endometrium with normal ovarian follicles. Taken together, our results provided that the expressions of apoptosis, adhesion and immune related proteins in uterine endometrium with ovarian cyst were showed the aberrant patterns, and we suggest that different expression changes of these proteins may be affect to pregnancy ability of cattle.
        4,000원
        20.
        2013.10 구독 인증기관·개인회원 무료
        The genus Diadegma is a well known parasitoid group and some are known to have symbiotic virus, PDV. A novel IV was discovered from the calyx of D. fenestrale female. D. fenestrale has more than two hosts, including PTM and DBM. The oviposition and survival rate results showed that D. fenestrale preferred PTM to DBM as hosts. Nevertheless, the developmental period and morphology of D. fenestrale were not significantly different between PTM and DBM. To identify these phenomena, DfIV genome expression patterens were compared between PTM and DBM under various conditions. DfIV genes were more widely expressed in PTM than in DBM after parasitized by D. fenestrale, particularly at the initial point. In addition, large numbers of DfIV genes were expressed only in PTM and they showed differential expression patterns between two lepidopteran hosts. This DfIV genome expression plasticity showed a dependency on the lepidopteran host species and parasitization time, suggesting that it may contribute to the parasitoid survival rate increase. This may be one of the key elements that determine the symbiotic relationship between PDV and parasitoid.
        1 2 3 4