검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 214

        62.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effects of maleic anhydride (MA) content on mechanical properties of chopped carbon fibers (CFs)-reinforced MA-grafted-polypropylene (MAPP) matrix composites. A direct oxyfluorination on CF surfaces was applied to increase the interfacial strength between the CFs and MAPP matrix. The mechanical properties of the CFs/MAPP composites are likely to be different in terms of MA content. Surface characteristics were observed by scanning electron microscope, Fourier transform infrared spectroscopy, and single fiber contact angle method. The mechanical properties of the composites were also measured by a critical stress intensity factor (KIC). From the KIC test results, the KIC values were increased to a maximum value of 3.4 MPa with the 0.1 % of MA in the PP, and then decreased with higher MA content.
        4,000원
        63.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon fiber (ACF) surfaces are modified using an electron beam under different aqueous solutions to improve the NO gas sensitivity of a gas sensor based on ACFs. The oxygen functional group on the ACF surface is changed, resulting in an increase of the number of non-carbonyl (-C-O-C-) groups from 32.5% for pristine ACFs to 39.53% and 41.75% for ACFs treated with hydrogen peroxide and potassium hydroxide solutions, respectively. We discover that the NO gas sensitivity of the gas sensor fabricated using the modified ACFs as an electrode material is increased, although the specific surface area of the ACFs is decreased because of the recovery of their crystal structure. This is attributed to the static electric interaction between NO gas and the non-carbonyl groups introduced onto the ACF surfaces.
        4,000원
        64.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Taguchi’s experimental design was employed in the melt spinning of molten mesophase pitch to produce carbon fibers. The textures of the obtained carbon fibers were radial with varied crack angles, as observed by scanning electron microscopy and polarized optical imaging. The diameter, crack angle, preferred orientation, and tensile modulus of the produced samples were examined to investigate the influence of four spinning variables. The relative importance of the variables has been emphasized for each characteristic. The results show that thicker carbon fiber can be obtained with a smaller entry angle, a higher spinning temperature, a reduced winding speed, and an increased extrusion pressure. The winding speed was found to be the most significant factor in relation to the fiber diameter. While it was observed that thicker carbon fiber generally shows improved preferred orientation, the most important variable affecting the preferred orientation was found to be the entry angle. As the entry angle decreased from 120° to 60°, the shear flow was enhanced to induce more ordered radial alignment of crystallite planes so as to obtain carbon fibers with a higher degree of preferred orientation. As a consequence, the crack angle was increased, and the tensile modulus was improved.
        4,000원
        65.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spinnable pitches and carbon fibers were successfully prepared from petroleum or coal pyrolysis residues. After pyrolysis fuel oil (PFO), slurry oil, and coal tar were simply filtered to eliminate the solid impurities, the characteristics of the raw materials were evaluated by elemental analysis, 13C nuclear magnetic resonance spectrometer, matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS), and so on. Spinnable pitches were prepared for melt-spinning carbon fiber through a simple distillation under strong nitrogen flow, and further vacuum distillation to obtain a high softening point. Carbon fibers were produced from the above pitches by single-hole melt spinning and additional heat treatment, for oxidization and carbonization. Even though spinnable pitches and carbon fibers were processed under the same conditions, the melt-spinning and properties of the carbon fiber were different depending on the raw materials. A fine carbon fiber could not be prepared from slurry oil, and the different diameter carbon fibers were produced from the PFO and coal tar pitch. These results seem to be closely correlated with the initial characteristics of the raw materials, under this simple processing condition.
        4,000원
        66.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, we studied the effects of electrochemical oxidation treatments of carbon fibers (CFs) on interfacial adhesion between CF and epoxy resin with various current densities. The surface morphologies and properties of the CFs before and after electrochemical-oxidation-treatment were characterized using field emission scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and single-fiber contact angle. The mechanical interfacial shear strength of the CFs/epoxy matrix composites was investigated by using a micro-bond method. From the results, electrochemical oxidation treatment introduced oxygen functional groups and increased roughness on the fiber surface. The mechanical interfacial adhesion strength also showed higher values than that of an untreated CF-reinforced composite.
        4,000원
        67.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cellulose fibers were stabilized by treatment with an electron-beam (E-beam). The properties of the stabilized fibers were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The E-beam-stabilized cellulose fibers were carbonized in N2 gas at 800°C for 1 h, and their carbonization yields were measured. The structure of the cellulose fibers was determined to have changed to hemicellulose and cross-linked cellulose as a result of the E-beam stabilization. The hemicellulose decreased the initial decomposition temperature, and the cross-linked bonds increased the carbonization yield of the cellulose fibers. Increasing the absorbed E-beam dose to 1500 kGy increased the carbonization yield of the cellulose-based carbon fiber by 27.5% upon exposure compared to untreated cellulose fibers.
        4,000원
        68.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN)-based carbon fibers have high specific strength, elastic modulus, thermal resistance, and thermal conductivity. Due to these properties, they have been increasingly widely used in various spheres including leisure, aviation, aerospace, military, and energy applications. However, if exposed to air at high temperatures, they are oxidized, thus weakening the properties of carbon fibers and carbon composite materials. As such, it is important to understand the oxidation reactions of carbon fibers, which are often used as a reinforcement for composite materials. PAN-based carbon fibers T300 and T700 were isothermally oxidized in air, and microstructural changes caused by oxidation reactions were examined. The results showed a decrease in the rate of oxidation with increasing burn-off for both T300 and T700 fibers. The rate of oxidation of T300 fibers was two times faster than that of T700 fibers. The diameter of T700 fibers decreased linearly with increasing burn-off. The diameter of T300 also decreased with increasing burn-off but at slower rates over time. Cross-sectional observations after oxidation reactions revealed hollow cores in the longitudinal direction for both T300 and T700 fibers. The formation of hollow cores after oxidation can be traced to differences in the fabrication process such as the starting material and final heat treatment temperature.
        4,000원
        69.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        세라믹 소재는 고분자 나노섬유 분리막과 비교하여 우수한 열안정성과 고투과 물성을 가짐으로써 지난 10여 년간 많은 주목을 이끌어왔다. 최근 들어 높은 다공도와 유량을 가지는 세라믹 섬유 분리막이 금속 산화물을 이용하여 주로 전기 방사법에 의해 제조되어 왔는데, 이러한 세라믹 분리막의 제조 단가를 감소하며 성능을 향상시키기 위해 나노섬유의 선택층 을 가지는 세라믹 분리막들이 전기방사 공정과 개질 과정을 통해 개발되었다. 본 리뷰에서는 최근 수년간 세라믹 섬유 분리 막의 개발을 위한 연구 동향에 대하여 정리하였다.
        4,000원
        72.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.
        4,000원
        73.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This review presents current progress in the preparation methods of liquid crystalline nanocarbon materials and the liquid crystalline spinning method for producing nano-carbon fibers. In particular, we focus on the fabrication of liquid crystalline carbon nanotubes by spinning from superacids, and the continuous production of macroscopic fiber from liquid crystalline graphene oxide.
        4,000원
        74.
        2015.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to study the impact of atmosphere during electron beam irradiation (EBI) of polyacrylonitrile (PAN) precursor fibers, the latter were stabilized by EBI in both air and oxygen atmospheres. Gel-fraction determination indicated that EBI-stabilization under an oxygen atmosphere leads to an enhanced cyclization in the PAN fibers. In the Fourier-transform infrared spectroscopy analysis, the PAN fibers stabilized by EBI under an oxygen atmosphere exhibited a greater decrease in the peak intensity at 2244 cm-1 (C≡N vibration) and a greater increase in the peak intensity at 1628 cm-1 (C=N absorption) than the corresponding PAN fibers stabilized under an air atmosphere. From the X-ray diffraction analysis it was found that oxygen uptake in PAN fibers leads to an increase in the amorphous region, produced by cyclization.
        3,000원
        75.
        2015.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study fabricated low thermal conductive polyacrylonitrile (PAN)-based carbon fibers containing cellulose particles while maintaining their mechanical properties. The high thermal conductivity of carbon fibers limits their application as a high temperature insulator in various systems such as an insulator for propulsion parts in aerospace or missile systems. By controlling process parameters such as the heat treatment temperature of the cellulose particles and the amount of cellulose added, the thermal and mechanical properties of the PANbased carbon fibers were investigated. The results show that it is possible to manufacture composite carbon fibers with low thermal conductivity. That is, thermal conductivities were reduced by the cellulose particles in the PAN based carbon fibers while at the same time, the tensile strength loss was minimized, and the tensile modulus increased.
        4,000원
        76.
        2015.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent decades, there has been an increasing interest in the use of carbon fiber reinforced plastic (CFRP) in aerospace, renewable energy and other industries, due to its low weight and relatively good mechanical properties compared with traditional metals. However, due to the high cost of petroleum-based precursors and their associated processing costs, CF remains a specialty product and as such has been limited to use in high-end aerospace, sporting goods, automotive, and specialist industrial applications. The high cost of CF is a problem in various applications and the use of CFRP has been impeded by the high cost of CF in various applications. This paper presents an overview of research related to the fabrication of low cost CF using polyethylene (PE) control technology, and identifies areas requiring additional research and development. It critically reviews the results of cross-linked PE control technology studies, and the development of promising control technologies, including acid, peroxide, radiation and silane cross-linking methods.
        6,100원
        78.
        2015.05 구독 인증기관·개인회원 무료
        In this study, enhanced cation exchange capacity of polystyrene (PS) electrospun fibers by electron beam irradiation was investigated. PS spinning solutions were prepared by dissolving 25 wt% PS in 75 wt% mixed solvents (dimethylacetamide (DMAc)/tetrahydrofuran (THF)) at the ratio of 33/67% v/v with divinylbenzene (DVB; 0, 1, 2 phr) as crosslink agent. The PS electrospun fibers were carried out at doses of 0 (control), 100 and 200 kGy. The ion exchange capacity (IEC) of PS electrospun fibers depend on the DVB concentration and irradiation dose. The PS electrospun fiber with DVB 1 phr at dose of 150 kGy showed the maximum IEC of 4.670 mmol/g.
        79.
        2015.05 구독 인증기관·개인회원 무료
        습식흡수제를 이용한 이산화탄소 포집 공정은 재생 시 많은 에너지가 필요한 단점이 있어 에너지를 낮추기 위한 다양한 대체 기술이 개발되고 있다. 이런 연구의 일환으로 최근에 분리막과 흡수제를 혼합하는 접촉막 기술이 개발되고 있으며, 흡수제의 단점을 극복하는 연구가 진행되고 있다. 본 연구에서는 세라믹소재를 이용하여 중공사막을 제조하였고 젖음성을 제어하기 위해 소수성 코팅을 한 중공사막을 개발하였다. 중공사막의 XRD, SEM, FT-IR 및 Porosimeter를 이용하여 분석하였고, 기공에 따른 CO2 분리 특성을 규명하였다.
        80.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers are prepared by stabilizing pitch fibers accompanying electron beam (E-beam) irradiation. The carbon fibers pretreated by E-beam irradiation achieve a higher stabilization index than the carbon fibers that are only heat-stabilized. In addition, the carbon fibers subjected to E-beam irradiation in the stabilization step exhibit a comparable tensile strength to that of general purpose carbon fibers. The carbon fibers pretreated with an absorbed dose of 3000 kGy have a tensile strength of 0.54 GPa for a similar fiber diameter. Elemental, Fourier-transform infrared spectroscopy, and thermogravimetric analyses indicate that Ebeam irradiation is an efficient oxidation and dehydrogenation treatment for pitch fibers by showing that the intensity of the aliphatic C–H stretching and aromatic CH2 bending (out-ofplane) bands significantly decrease and carbonyl and carboxylic groups form.
        4,000원
        1 2 3 4 5