검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 214

        81.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, carbonized fibers were prepared by using acidically cross-linked LDPE fibers. The surface morphologies of the carbonized fibers were observed by SEM. The effects of cross-linking process temperatures were studied using thermal analyses such as DSC and TGA. The melting and heating enthalpy of the fibers decreased as the cross-linking temperature increased. The cross-linked fibers had a carbonization yield of over 50%. From SEM results the highest yield of carbonized LDPE-based fibers was obtained by cross-linking at a sulfate temperature (170oC). As a result, carbonation yield of the carbonized fibers was found to depend on the functions of the cross-linking ratio of the LDPE precursors.
        4,000원
        82.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The process of oxidizing polyacrylonitrile (PAN)-based carbon fibers converts them into an infusible and non-flammable state prior to carbonization. This represents one of the most important stages in determining the mechanical properties of the final carbon fibers, but the most commonly used methods, such as thermal treatment (200°C to 300°C), tend to waste a great deal of process time, money, and energy. There is therefore a need to develop more advanced oxidation methods for PAN precursor fibers. In this review, we assess the viability of electron beam, gamma-ray, ultra-violet, and plasma treatments with a view to advancing these areas of research and their industrial application.
        4,000원
        83.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study highlights a novel method and mechanism for the rapid and effective milling of carbon fibers (CFs) in silicon carbide (SiC) powder, and also the dispersion of CFs in SiC powder. The composite powders were prepared by chopping and exfoliation of CFs, and ball milling of CFs and SiC powder in isopropyl alcohol. A wide range of CFs loading, from 10 to 50 vol%, was studied. The milling of CFs and SiC powder was checked by measuring the average particle size of the composite powders. The dispersivity of CFs in SiC powder was checked through scanning electron microscope. The results show that the usage of exfoliated CF tows resulted in a rapid and effective milling of CFs and SiC powder. The results further show an excellent dispersion of CFs in SiC powder for all CFs loading without any dispersing agent.
        4,000원
        84.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pitch is an attractive raw material for carbon fiberprecursors due to its low cost stemming from its availability as a residue of coking and petroleum processes. Ford Motor Company reported a carbon fibertarget price of 11.0/kg by using a fast cycle-time manufacturing method with carbon fiberin an inexpensive format, allowing for an average retail price of gasoline of 3.58/gallon. They also recommended the use of carbon fiberwith strength of 1700 MPa, modulus of 170 GPa, and 1.5% elongation. This study introduced a ca. 5.5 μm carbon fiberwith 2000 MPa tensile strength obtained from a precursor through simple distil-lation of petroleum residue. Petroleum pitch based carbon nanofibersprepared via electros-pinning were characterized and potential applications were introduced on the basis of their large specific surface area and relatively high electrical conductivity.
        4,000원
        85.
        2013.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-quality β-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense β-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane (SiH4) and acetylene (C2H2) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of β-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free β-SiC coating layers are crystallized in β-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.
        4,000원
        86.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, electroless Ni-plating on polyethylene terephthalate (PET) ultra-fine fibers surfaces was carried out to improve the electric conductivity of the fiber. The surface properties of PET ultra-fine fibers were characterized using scanning electron microscopy, X-ray diffraction, and contact angle analyses. The electric conductivity of the fibers was measured using a 4-point testing method. The experimental results revealed the presence of island-like nickel clusters on the PET ultra-fine fibers surfaces in the initial plating state, and the electric conductivity of the Ni-plated fibers was enhanced with increasing plating time and thickness of the Ni-layers on the PET ultra-fine fibers.
        3,000원
        87.
        2013.11 KCI 등재 구독 인증기관·개인회원 무료
        귀리, 콩, 감자, 밀에서 유래한 다양한 식이섬유를 밀가루 대신 10-40%까지 대체함에 따른 수화능, 동적점탄성, 용매흡착능 및 in vitro starch digestion을 비교하였다. 귀리, 콩, 감자, 밀에서 유래한 다양한 식이섬유를 식이섬유의 대체비율이 증가할수록 수분흡착능과 팽윤력은 증가한 반면, 수분용해도는 감소하였다. 밀가루 대신 콩과 감자 식이섬유를 대체함에 따라 동적점탄성은 증가하였으나, 귀리와 밀 식이섬유 대체에서는 오히려 감소하는 경향을 보였다. 식이섬유 대체에 따른 밀가루의 용매흡착능 변화를 분석한 결과, 낮은 대체량의 귀리 식이섬유와 높은 대체량의 콩과 감자 식이섬유가 활용 가능성을 보였다. 원료별 식이섬유 대체 시 밀가루 겔의 전분소화 패턴은 식이섬유 대체비율이 증가함에 따라 glucose 방출은 감소하였으나, 원료별 특성에 따른 유의적인 차이는 없었다. 특히, 밀식이섬유를 제외한 귀리, 콩, 감자 식이섬유는 모두 RDS감소와 RS증가에 따른 pGI 저하를 보여 실제 식품소재로 활용 시 가공적성을 유지할 수 있다면 전분소화지연효과를 기대할 수 있음을 확인할 수 있었다. 한편, 식이섬유의 원료에 따른 식이섬유 조성과 전분소화 관련 특성 간 상관관계를 분석한 결과, 전분소화를 지연시키는 효과는 수용성 식이섬유보다는 불용성과 총식이섬유 함량이 중요한 인자임을 알 수 있었다.
        88.
        2013.06 구독 인증기관 무료, 개인회원 유료
        10,500원
        89.
        2013.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Coal tar is the primary feedstock of premium graphitizable carbon precursor. Coal tars are residues formed as byproducts of thermal treatments of coal. Coal tar pitches were prepared through two different heat treatment schedules and their properties were characterized. One was prepared with argon and oxidation treatment with oxygen; the other was prepared with oxygen treatment at low temperature and then argon treatment at high temperature; both used coal tar to prepare coal tar pitches. To modulate the properties, different heat treatment temperatures (300~400˚C) were used for the coal tar pitches. The prepared coal tar pitches were investigated to determine several properties, such as softening point, C/H ratio, coke yield, and aromaticity index. The coal tar pitches were subject to considerable changes in chemical composition that arose due to polymerization after heat treatment. Coal tar pitch showed considerable increases in softening point, C/H ratio, coke yields, and aromaticity index compared to those characteristics for coal tar. The contents of gamma resin, which consists of low molecular weight compounds in the pitches and is insoluble in toluene, showed that the degree of polymerization in the pitches was proportional to C/H ratio. Using an oxidizing atmosphere like air to prepare the pitches from coal tar was an effective way to increase the aromaticity index at relatively low temperature.
        4,000원
        90.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effect of catalysts on the mechanical properties of carbon fibers-reinforced epoxy matrix composites cured by cationic latent thermal catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) was studied. Differential scanning calorimetry was executed for thermal characterization of the epoxy matrix system. Mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (KIC), and specific fracture energy (GIC). As a result, the conversion of neat epoxy matrix cured by BPH was higher than that of one cured by diaminodiphenyl methane (DDM). The ILSS, KIC, GIC, and impact strength of the composites cured by BPH were also superior to those of the composites cured by DDM. This was probably the consequence of the effect of the substituted benzene group of BPH catalyst, resulting in an increase in the cross-link density and structural stability of the composites studied.
        3,000원
        91.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.
        4,600원
        92.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an sp3 carbon contribution, and having pore sizes around 10μm favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.
        4,000원
        93.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 유리단섬유로 보강된 분사식 섬유보강 복합재료의 인장거동 평가를 위한 실험 및 해석연구를 수행하였다. 이를 위해 다양한 변형율속도(strain rate)에 따른 에폭시수지 및 분사식 섬유보강 복합재료의 인장강도 실험을 수행하였다. 본 연구에 사용된 분사식 섬유보강 복합재료는 15mm 길이로 절단된 유리단섬유가 25% 부피비율로 혼입된 보수·보강용 재 료이다. 에폭시수지의 점탄성 특성을 고려하기 위해 역산모델링(inverse simulation)을 수행하여 변형율속도에 따른 점성변화 를 함수식으로 제안하였다. 역산모델링을 통해 제안된 함수식을 미세역학 기반의 점탄성 손상모델(micromechanics-based viscoelastic damage model; Yang et al., 2012)에 적용하여 분사식 섬유보강 복합재료의 인장거동을 수치적으로 해석하였다. 분사식 섬유보강 복합재료의 인장거동 해석결과와 실험결과를 비교하여 미세역학 기반의 점탄성 손상모델의 정확성을 검증 하였다.
        4,000원
        94.
        2012.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lumbar multifidus muscle, which can be separated into deep fascicles (DM) and superficial fascicles (SM), is important for lumbar segmental stability. However, no previous studies have investigated the effect of lumbar stabilization exercises on the thickness of DM and SM. Thus, the purpose of this study was to assess DM thickness after three different lumbar segmental stabilization exercises. In total, 30 healthy male participants were recruited and randomly assigned to one of three exercise groups: hollowing in the quadruped position (H-Quad), contralateral arm and leg lift (CALL), and bilateral arm and leg lift (BALL). Each lumbar segmental stabilization exercise was conducted over 4 weeks. Ultrasonography was used to compare the DM and SM thickness before and after the 4 weeks of exercise. A mixed-model analysis of variance using Scheffe's post-hoc test was used for statistical analysis. The results showed a significant effect for the measurement time (before vs. after 4 weeks of exercise) in the DM (F=31.26, p<.05) and SM (F=4.56, p<.05). At the end of the 4 weeks, the DM thickness had increased significantly in the H-Quad exercise group, and the SM thickness had increased significantly in the CALL and BALL exercise groups. Also in the BALL exercise group, the SM thickness was greater compared with that in the H-Quad exercise group. These findings suggest that the thickness of the DM and SM were increased by different types of lumbar segmental stability exercise after 4 weeks.
        4,000원
        95.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this present work, the effect of additional heat-treatment (AHT) in the range from 1800℃ to 2400℃ on the chemical composition, morphology, microstructure, tensile properties, electrical resistivity, and thermal stability of commercial polyacrylonitrile (PAN)-based carbon fibers was explored by means of elemental analysis, electron microscopy, X-ray diffraction analysis, single fiber tensile testing, two-probe electrical resistivity testing, and thermogravimetric analysis (TGA). The characterization results were in agreement with each other. The results clearly demonstrated that AHTs up to 2400℃ played a significant role in further contributing not only to the enhancement of carbon content, fiber morphology, and tensile modulus, but also to the reduction of fiber diameter, inter-graphene layer distance, and electrical resistivity of "as-received" carbon fibers without AHT. The present study suggests that key properties of commercial PAN-based carbon fibers of an intermediate grade can be further improved by proprietarily adding heat-treatment without applying tension in a batch process.
        4,000원
        96.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Kenaf fibers, cellulose-based natural fibers, were used as precursor for preparing kenafbased carbon fibers. The effects of carbonization temperature (700℃ to 1100℃) and chemical pre-treatment (NaOH and NH4Cl) at various concentrations on the thermal change, chemical composition and fiber morphology of kenaf-based carbon fibers were investigated. Remarkable weight loss and longitudinal shrinkage were found to occur during the thermal conversion from kenaf precursor to kenaf-based carbon fiber, depending on the carbonization temperature. It was noted that the alkali pre-treatment of kenaf with NaOH played a role in reducing the weight loss and the longitudinal shrinkage and also in increasing the carbon content of kenaf-based carbon fibers. The number and size of the cells and the fiber diameter were reduced with increasing carbonization temperature. Morphological observations implied that the micrometer-sized cells were combined or fused and then re-organized with the neighboring cells during the carbonization process. By the pre-treatment of kenaf with 10 and 15 wt% NaOH solutions and the subsequent carbonization process, the inner cells completely disappeared through the transverse direction of the kenaf fiber, resulting in the fiber densification. It was noticeable that the alkali pre-treatment of the kenaf fibers prior to carbonization contributed to the forming of kenaf-based carbon fibers.
        4,000원
        97.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN) fibers were pre-oxidized in a temperature range of 180-275℃. The effects of positive and negative stretching on the structure and morphology of PAN fiber in the pre-oxidation process were studied by FTIR spectroscopy, XRD, and SEM. Mechanical property changes were also investigated. No changes in the movement and intensity of functional groups of PAN fibers were caused by positive stretching of up to 10% and negative stretching down to -8%. The crystal structure can be affected by the positive stretching and negative stretching. The maximum strength is 479.81 MPa when the stretching is positive, and the maximum strength is 420.55 MPa when the stretching is negative.
        4,000원
        98.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two pitches with different average molecular structures were electrospun and compared in terms of the properties of their fibers after oxidative stabilization, carbonization, and activation. The precursor with a higher molecular weight and greater content of aliphatic groups (Pitch A) resulted in better solubility and spinnability compared to that with a lower molecular weight and lower aliphatic group content (Pitch B). The electrical conductivity of the carbon fiber web from Pitch A of 67 S/cm was higher than that from Pitch B of 52 S/cm. The carbon fiber web based on Pitch A was activated more readily with lower activation energy, resulting in a higher specific surface area compared to the carbon fiber based on Pitch B (Pitch A, 2053 m2/g; Pitch B, 1374 m2/g).
        4,200원
        99.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon fibers (ACFs) were prepared from cost effective commercial textiles through stabilization, carbonization, and subsequently activation by carbon dioxide. ACFs were characterized for surface area and pore size distribution by physical adsorption of nitrogen at 77 K. ACFs were also examined for various surface characteristics by scanning electron microscopy, Fourier transform infrared spectroscopy, and CHNO elemental analyzer. The prepared ACFs exhibited good surface textural properties with well developed micro porous structure. With improvement in physical strength, the commercial textile grade acrylic precursor based ACFs developed in this study may have great utility as cost effective adsorbents in environmental remediation applications.
        3,000원
        100.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Synthesis of carbon fibers from cotton fiber by pyrolysis process has been described. Synthesis parameters are optimized using Taguchi optimization technique. Synthesized carbon fibers are used for studying hydrogen adsorption capacity using Seivert's apparatus. Transmission electron microscopy analysis and X-ray diffraction of carbon fiber from cotton suggested it to be very transparent type material possessing graphitic nature. Carbon synthesized from cotton fibers under the conditions predicted by Taguchi optimization methodology (no treatment of cotton fiber prior to pyrolysis, temperature of pyrolysis 800℃, Argon as carrier gas and paralyzing time for 2 h) exhibited 7.32 wt% hydrogen adsorption capacity.
        4,000원
        1 2 3 4 5