검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2022.06 구독 인증기관 무료, 개인회원 유료
        광전기화학 성능을 향상시키기 위해 각 ZnO, ZnSe과 g-C3N4 소재의 장점을 살리도록 3성분계 적층 구조를 디자 인했다. 용액공정으로 FTO 기판위에서 ZnO 나노로드 어레이가 성장하도록 한 후 ZnO표면에 Se을 부착시켜 ZnO표면에 서 ZnSe층이 형성 되도록 이온 치환법을 도입하였다. ZnO/ZnSe 나노로드 위에 g-C3N4 층을 스핀코팅 한 후 각 층이 화 학적 접합이 되도록 질소 분위기 하에서 열처리를 하였다. AM 1.5G, 0.5 V 외부전압하에서 각 적층구조별로 광전기화학 적 전류밀도를 측정하였고 비교 결과 ZnO/ZnSe/g-C3N4 나노로드가 ZnO 및 ZnO/ZnSe 나노로드에 비하여 보다 높은 광 전류 밀도가 측정되었다. 수직 정렬된 ZnO 육각 프리즘형태는 큰 비표면적과 축 방향을 따라 전자 흐름을 원활히 하고, ZnSe 층은 비표면적과 광흡수 범위를 더욱 넗히는 효과를 가져왔다. 이로 인하여 ZnO/ZnSe/g-C3N4 삼원 접합 전극의 향상된 성능은 가시광선 흡수범위 확장, 전하 분리 강화 및 전자 전도도 향상으로 인한 시너지 효과에 기인되는 것으로 판단된다.
        4,000원
        2.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.
        4,000원
        3.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Reducing CO2 into high value fuels and chemicals is considered a great challenge in the 21st century. Efficiently activating CO2 will lead to an important way to utilize it as a resource. This article reviews the latest progress of g-C3N4 based catalysts for CO2 reduction. The different synthetic methods of g-C3N4 are briefly discussed. Article mainly introduces methods of g-C3N4 shape control, element doping, and use of oxide compounds to modify g-C3N4. Modified g-C3N4 has more reactive sites, which can significantly reduce the probability of photogenerated electron hole recombination and improve the performance of photocatalytic CO2 reduction. Considering the literature, the hydrothermal method is widely used because of its simple equipment and process and easy control of reaction conditions. It is foreseeable that hydrothermal technology will continue to innovate and usher in a new period of development. Finally, the prospect of a future reduction of CO2 by g-C3N4-based catalysts is predicted.
        4,000원
        4.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, a carbon-doped carbon nitride photocatalyst is successfully synthesized through a simple centrifugal spinning method after heat treatment. The morphology and properties of the prepared photo catalyst are characterized by Xray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis spectrophotometer (UV-vis), and specific surface area. The results show that the band gap of the prepared sample, g-CN-10 is 2.1 eV, is significantly lower than that of pure carbon nitride, 2.7 eV. As the amount of cotton candy increased, the absorption capacity of the prepared catalyst for visible light is significantly enhanced. In addition, the degradation efficiency of Rhodamine B (RhB) by sample g-CN-10 is 98.8 % over 2h, which is twice that value of pure carbon nitride. The enhancement of photocatalytic ability is attributed to the increase of specific surface area after the carbon doping modifies carbon nitride. A possible photocatalytic degradation mechanism of carbon-doped carbon nitride is also suggested.
        4,000원
        5.
        2020.01 KCI 등재 서비스 종료(열람 제한)
        Silver nanoparticles were loaded onto g-C3N4 (CN) with a nanoroll-type morphology (Ag/CN) synthesized using a co-polymerization method for highly selective conversion of toxic nitrobenzene to industrially-valuable aminobenzene. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) images of Ag/CN revealed the generation of the nanoroll-type morphology of CN. Additionally, HRTEM analysis provided direct evidence of the generation of a Schottky barrier between Ag and CN in the Ag/CN nanohybrid. Photoluminescence analysis and photocurrent measurements suggested that the introduction of Ag into CN could minimize charge recombination rates, enhancing the mobility of electrons and holes to the surface of the photocatalyst. Compared to pristine CN, Ag/CN displayed much higher ability in the photocatalytic reduction of nitrobenzene to aminobenzene, underscoring the importance of Ag deposition on CN. The enhanced photocatalytic performance and photocurrent generation were primarily ascribed to the Schottky junction formed at the Ag/CN interface, greater visible-light absorption efficiency, and improved charge separation associated with the nanoroll morphology of CN. Ag would act as an electron sink/trapping center, enhancing the charge separation, and also serve as a good co-catalyst. Overall, the synergistic effects of these features of Ag/CN improved the photocatalytic conversion of nitrobenzene to aminobenzene.