검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 21

        2.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A signi cant number of the parameters of a gamma-ray burst (GRB) and its host galaxy are calculated from the afterglow. There are various methods obtaining extinction values for the necessary correction for galactic foreground. These are: galaxy counts, from HI 21 cm surveys, from spectroscopic measurements and colors of nearby Galactic stars, or using extinction maps calculated from infrared surveys towards the GRB. We demonstrate that AKARI Far-Infrared Surveyor sky surface brightness maps are useful uncovering the ne structure of the galactic foreground of GRBs. Galactic cirrus structures of a number of GRBs are calculated with a 2 arcminute resolution, and the results are compared to that of other methods.
        3,000원
        12.
        2003.04 구독 인증기관·개인회원 무료
        16.
        2016.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs). We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV) yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV). We also found that peak luminosity is positively correlated with peak energy.
        17.
        2016.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We extend the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23 -18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.
        18.
        2012.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We revisit the relation between the peak luminosity Liso and the spectral time lag in the source frame. Since gamma-ray bursts (GRBs) are generally thought to be beamed, it is natural to expect that the collimation-corrected peak luminosity may well correlate with the spectral time lag in the source frame if the lag-luminosity relation in the GRB source frame exists. With 12 long GRBs detected by the Swift satellite, whose redshift and spectral lags in the source frame are known, we computed L0,H and L0,W using bulk Lorentz factors Γ0,H and Γ0,W archived in the published literature, where the subscripts H and W represent homogeneous and wind-like circumburst environments, respectively. We have confirmed that the isotropic peak luminosity correlates with the spectral time lag in the source frame. We have also confirmed that there is an anti-correlation between the source-frame spectral lag and the peak energy, Epeak (1 + z) in the source frame. We have found that the collimation-corrected luminosity correlates in a similar way with the spectral lag, except that the correlations are somewhat less tight. The correlation in the wind density profile seems to agree with the isotropic peak luminosity case better than in the homogeneous case. Finally we conclude by briefly discussing its implications.
        1 2