검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[Mo(CO)6] as precursor and ozone(O3) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the Mo6+ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from 576 oC to 620 oC at 250 g/Nm after post-deposition annealing at 350 oC in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.
        4,000원
        2.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the influence on the surface passivation properties of crystalline silicon according to silicon wafer thickness, and the correlation with a-Si:H/c-Si heterojunction solar cell performances were investigated. The wafers passivated by p(n)-doped a-Si:H layers show poor passivation properties because of the doping elements, such as boron(B) and phosphorous(P), which result in a low minority carrier lifetime (MCLT). A decrease in open circuit voltage (Voc) was observed when the wafer thickness was thinned from 170μm to 50μm. On the other hand, wafers incorporating intrinsic (i) a-Si:H as a passivation layer showed high quality passivation of a-Si:H/c-Si. The implied Voc of the ITO/p a-Si:H/i a-Si:H/n c-Si wafer/i a-Si:H/n a-Si:H/ITO stacked layers was 0.715 V for 50μm c-Si substrate, and 0.704 V for 170μm c-Si. The Voc in the heterojunction solar cells increased with decreases in the substrate thickness. The high quality passivation property on the c-Si led to an increasing of Voc in the thinner wafer. Short circuit current decreased as the substrate became thinner because of the low optical absorption for long wavelength light. In this paper, we show that high quality passivation of c-Si plays a role in heterojunction solar cells and is important in the development of thinner wafer technology.
        4,000원