검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 365

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aerospace and power generation industries have an increasing demand for high-temperature, highstrength materials. However, conventional materials typically lack sufficient fracture toughness and oxidation resistance at high temperatures. This study aims to enhance the high-temperature properties of Nb-Si-Ti alloys through ball milling. To analyze the effects of milling time, the progression of alloying is evaluated on the basis of XRD patterns and the microstructure of alloy powders. Spark plasma sintering (SPS) is employed to produce compacts, with thermodynamic modeling assisting in predicting phase fractions and sintering temperature ranges. The changes in the microstructure and variation in the mechanical properties due to the adjustment of the sintering temperature provide insights into the influence of Nb solid solution, Nb5Si3, and crystallite size within the compacts. By investigating the changes in the mechanical properties through strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, and crystallite refinement, this study aims to verify the applicability of Nb-Si-Ti alloys in advanced material systems.
        4,000원
        3.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand for high-strength steel is rising due to its economic efficiency. Low-cycle fatigue (LCF) tests have been conducted to investigate the nonlinear behaviors of high-strength steel. Accurate material models must be used to obtain reliable results on seismic performance evaluation using numerical analyses. This study uses the combined hardening model to simulate the LCF behavior of high-strength steel. However, it is challenging and complex to determine material model parameters for specific high-strength steel because a highly nonlinear equation is used in the model, and several parameters need to be resolved. This study used the particle swarm algorithm (PSO) to determine the model parameters based on the LCF test data of HSA 650 steel. It is shown that the model with parameter values selected from the PSO accurately simulates the measured LCF curves.
        4,000원
        5.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.
        4,000원
        6.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper investigates the effects of aspect ratio and volume fraction of hooked-end normal-strength steel fibers on the compressive and flexural properties of high-strength concrete with specified compressive strength of 60 MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were considered and three volume fractions of 0.25%, 0.50% and 0.75% for each steel fiber were respectively added into each high-strength concrete mixture. The test results indicated that the addition of normal-strength steel fibers is effective to improve compressive and flexural properties of high-strength concrete but fiber aspect ratio had little effect on the modulus of elasticity and compressive strength. As steel fiber content and aspect ratio increased, flexural beahvior of notched high-strength concrete beams was effectively improved.
        4,000원
        8.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고성능 콘크리트(HPC) 압축강도는 추가적인 시멘트질 재료의 사용으로 인해 예측하기 어렵고, 개선된 예측 모델의 개발이 필수적 이다. 따라서, 본 연구의 목적은 배깅과 스태킹을 결합한 앙상블 기법을 사용하여 HPC 압축강도 예측 모델을 개발하는 것이다. 이 논 문의 핵심적 기여는 기존 앙상블 기법인 배깅과 스태킹을 통합하여 새로운 앙상블 기법을 제시하고, 단일 기계학습 모델의 문제점을 해결하여 모델 예측 성능을 높이고자 한다. 단일 기계학습법으로 비선형 회귀분석, 서포트 벡터 머신, 인공신경망, 가우시안 프로세스 회귀를 사용하고, 앙상블 기법으로 배깅, 스태킹을 이용하였다. 결과적으로 본 연구에서 제안된 모델이 단일 기계학습 모델, 배깅 및 스태킹 모델보다 높은 정확도를 보였다. 이는 대표적인 4가지 성능 지표 비교를 통해 확인하였고, 제안된 방법의 유효성을 검증하였다.
        4,000원
        10.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, based on the existing research, we define the parameters for the number of ignition devices to be applied to the pyrovalve, the operation and airtightness according to the temperature, the material of the nipple and the thickness of the fractured part, and ANSYS Ver. 19.2 was used to analyze the FEA model, and a comparative analysis was conducted through structure analysis according to the piston shape of the pyrovalve. In addition, an experimental study was conducted by manufacturing a prototype according to the design variables. As a result, high-strength pyrovalves can stably supply working fluids such as fuel and oxidizer for space launch vehicle propulsion engines, as well as precisely control flow path switching was confirmed.
        4,000원
        12.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        유리섬유 또는 바잘트섬유로 만들어진 고성능 복합섬유 패널은 고강도 보강재이지만, 구조보강을 위해 정사각형 또는 직사각형 구조물에 패널을 부착할 경우에 일체형 거동을 확보하기 위해 모서리 패널이 사용된다. 이러한 모서리 패널을 이용한 복합섬유 패널의 볼트 접합부를 통해 일체형 거동을 확인하기 위해 실험을 진행하였다. 실험변수로 연단거리 비, 측단거리 비, 볼트 배치 형태(엇모배치와 일렬배치) 및 전단면 수가 설정되었다. 강도평가에 대한 실험 결과, 볼트직경에 대한 연단거리비가 4이상 권장된다는 것을 확인하였고 이를 확보할 시 지압에 의한 파괴모드를 확인하였다. 또한, 볼트배치 2종류의 파괴하중은 값이 유사하였다.
        4,000원
        13.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We fabricate the non-equiatomic high-entropy alloy (NE-HEA) Fe49.5Mn30Co10Cr10C0.5 (at.%) using spark plasma sintering under various sintering conditions. Each elemental pure powder is milled by high-energy ball milling to prepare NE-HEA powder. The microstructure and mechanical properties of the sintered samples are investigated using various methods. We use the X-ray diffraction (XRD) method to investigate the microstructural characteristics. Quantitative phase analysis is performed by direct comparison of the XRD results. A tensile test is used to compare the mechanical properties of small samples. Next, electron backscatter diffraction analysis is performed to analyze the phase fraction, and the results are compared to those of XRD analysis. By combining different sintering durations and temperature conditions, we attempt to identify suitable spark plasma sintering conditions that yield mechanical properties comparable with previously reported values. The samples sintered at 900 and 1000oC with no holding time have a tensile strength of over 1000 MPa.
        4,000원
        14.
        2021.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Methods for predicting the ultimate/buckling strength of ship structures have been extensively improved in terms of design formulas and analytical solutions. In recent years, the design strategy of ships and offshore structures has tended to emphasize lighter builds and improve operational safety. Therefore, the corresponding geometrical changes in design necessitate the use of high-tensile steel and thin plates. However, the existing design formulas were mainly developed for thick plates and mild steels. Therefore, the calculation methods require appropriate modification for new designs beased on high-tensile steel and thin plates. In this study, a modified formula was developed to predict the ultimate strength of thin steel plates subjected to compressive and shear loads. Based on the numerical results, the effects of the yield stress, slenderness ratio, and loading condition on the buckling/ultimate strength of steel plates were examined, and a newly modified double-beta parameter formula was developed. The results were used to derive and modify existing closed-form expressions and empirical formulas to predict the ultimate strength of thin-walled steel structures.
        4,000원
        16.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the fatigue properties of press die steel, such as SKD11, and three high-durability die steel for the cold forming of ultra-high-strength steel sheets are evaluated. Specimens for fatigue, tensile, and hardness tests are manufactured through the heat treatment recommended by steelmakers and ultra-high precision processing. The general mechanical properties and fatigue properties are derived from hardness, tensile, and fatigue tests for four die steel. The tensile and fatigue properties of die steel derived through the tests are compared and analyzed. In particular, the correlation between the fatigue limit and the general mechanical properties such as tensile strength and elongation is analyzed, which allows relational expressions to be obtained through regression analysis. Finally, the study confirms that applying high-durability die steel is necessary for improving the die life in the manufacturing of press dies for ultra-high-strength steel sheets.
        4,000원
        17.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 해양플랜트에 주로 사용되는 알루미늄 사다리의 독자 모델을 개발하기 위하여, 개량형 알루미늄 합금(6082-T6) 을 적용하고 국제 기준에 부합한 구조강도 설계를 하였다. 국제기준은 ISO, NORSOK, Austria Standard를 참고하였으며, 모든 조건이 만족할 수 있도록 하중 조합을 하였다. 설계된 모델은 유한요소법 [Finite elements method]을 근간으로 하는 해양플랜트 전용 해석프로그램인 SACS를 사용하여 구조 안전성을 검증하여 응력 및 처짐이 모두 허용기준 이내에 만족함을 확인하였다. 개발모델은 모든 허용기준을 만족하면서도 가볍고, 생산성이 향상되어 향후 많은 분야에서 사용이 될 것으로 기대해본다.
        4,000원
        19.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.
        4,200원
        20.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper aims at investigating the adhesive property at damage analysis according to the shape of the DCB test specimen made of Titanium, Dualumin as the high strength nonferrous metals. In this analysis, all three specimens had the lower holes bound by the cylinder support and the top holes were elongated with the rate of 6mm/min. The study results show that the longer the load block of DCB specimens, the more reliable and durable they are. It is utilized as the basic data at investigating the damage properties of adhesives in DCB specimens made of high strength nonferrous metals.
        4,000원
        1 2 3 4 5