검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2006.02 구독 인증기관 무료, 개인회원 유료
        Because of building higher story and larger buildings, and because current concrete, a basic construction material, needs higher strength rather than normal strength, the use of high-strength concrete becomes more widely spread. High-strength concrete shows very high temperature increase due to inside heat of hydration different from normal-strength concrete, and because mass concrete under low temperature shows temperature stress due to temperature difference between inner and outer parts, it is known or reported that there is a significant difference between the compressive strength of srtucture and that of specimen for management, and between the compressivestrength of circular specimen made by standard underwater curing and structure concrete Therefore, in this research, an adiabatic curing box was manufactured which can provide hydration heat hysteresis of high strength mass concrete members and similar hydration heat hysteresis, using insulating materials, as a easy and exact method to manage compressive strength of rnass concrete member under low temperature, and the features of concrete member and those of specimen for management were compared.
        4,000원
        2.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        In the current study, retarding type and standard type admixture design of concrete have been proposed to control the generation of hydration heat for foundation members that use high strengths concrete. Finite element analysis also has been conducted to understand the rational placing heights of concrete. In addition, real-size structures have experimented and their results were compared to the analytical results to evaluate the reducing effect of thermal stress . For a large 6.5 m×6.5 m×3.5 m member with retarding and standard type horizontal partition placement of concrete showed the manageable possibility of temperature difference within 25-degree Celcius between the middle and surface portion while the maximum temperature was 77-degree Celcius. Also, temperature cracking index from the finite element analysis appeared to be 1.49 that predicts no formation of cracking due to the effects of temperature. Finally, it appeared that horizontal partition placement of retarding and standard type concrete has the significant effect of reducing the thermal stress that generated by the hydration heat in the high strengths mass concrete.