검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2016.10 구독 인증기관·개인회원 무료
        Abnormal epigenetic reprogramming of donor nuclei is supposed to be one of the factors that causes low development efficiency of mammalian somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone acetylase, and so development of SCNT embryos could be increased by treatment with TSA. In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from NT (nuclear transfer) by investigating the status of histone acetylation in TSA-treated and control NT embryos and the expression of developmental related genes. In this study, we found that incubating NT embryos with 40nM TSA for 24h after activation could improved the blastocyst formation rate from 13.7% to 32.5%. Thechange in histone acetylation level as a reslut of TSA treatment were validated using immunofluorescence and confocal microscopy. Immunofluorescence results indicated that the level of aetylation at histone 3 lysine 18 (AcH3K18) was increased at early embryo development stage after TSA treatment. furthermore, we compared the expression patterns of several genes (developmental related genes; Oct4, Sox2, Nanog, Cdx2, the imprinting genes; igf2r). TSA treatment improved the expression of development related genes such as Oct4, Cdx2, Nanog as well as the imprinted genes like igf2r. In conclusion, our results demonstrated that TSA treatment improves the in vitro development of porcine NT embryos, increased the global histone acetylation (AcH3K18) and enhances the expression of some developmentally important genes (Oct4, Cdx2, Nanog) at blastocyst stages.
        2.
        2011.10 구독 인증기관·개인회원 무료
        Somatic cell nuclear transfer (SCNT) and induced pluripotent stem cell (iPS) experiments have generally demonstrated that a differentiated cell directly converts into a undifferentiated or pluripotent state. In SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor cell nuclei to the recipient cytoplasm of matured oocytes. Although nuclear reprogramming of cells by the ex-ovo methods is not always consistent or efficient, it has been suggested that a combination of nuclear reprogramming technique may improve the efficiency or frequency of normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from GV stage sturgeon's oocytes prior to their use as nuclear donors for SCNT will improve subsequent development. We reported a reversible permeabilization protocol with digitonin to deliver sturgeon oocyte exteact (SOE) to porcine fetal fibroblast cell nuclei ex ovo. Porcine fibroblasts were permeabilized by 4 μg/ml of digitonin for 2 min at 4℃ and then incubated in SOE for 7h at 15 18℃ followed by resealing of cell membrane. As results, no difference was observed in the number of fused couplets or the number of fused couplets that cleaved between the extract treated or control group. However, there was a significantly decrease in the percentage of fused couplets that developed to the blastocyst stage in the SOE treated group (p<0.05). Histone acetylation status was determined using an antibody to acetylation at lysine 9 on histone 3 (H3K9Ac). The intensity of H3K9Ac staining in 1-cell stage NT embryos was significantly increased when treated with the SOE (p<0.05), similar to that in 1-cell stage IVF embryos. In addition, porcine NT embryos reconstructed by using donor cell exposed to SOE prior to cell fusion significantly decreased developmental competence to the blastocyst stage but increased pluripotent gene expressions (Sox2, Nanog and Oct3/4) when compared with those in normal NT embryos (p<0.05).
        8.
        2017.02 KCI 등재 서비스 종료(열람 제한)
        In this study, we produced the recombinant lunasin peptide using E. coli and P. pastoris, and evaluated biological activity of the recombinant lunasin peptide. Lunasin peptide was produced from E. coli transfected with pPGEX-lunasin expression vector and P. pastoris GS115 transfected with pPIC-lunasin expression vector. These recombinant lunasin peptides were similar to the synthetic lunasin peptide in the identification by LC-ESI-MS. In addition, the recombinant lunasin peptide from E. coli and P. pastoris was bound in the chromatin, and inhibited histone acetylation and the activity of histone acetyltransferase. These findings suggest that the production of the lunasin peptide using E. coli and P. pastoris will be useful for industrial utilization of lunasin peptide.
        9.
        2017.02 KCI 등재 서비스 종료(열람 제한)
        In this study, we produced the recombinant lunasin peptide using E. coli and P. pastoris, and evaluated biological activity of the recombinant lunasin peptide. Lunasin peptide was produced from E. coli transfected with pPGEX-lunasin expression vector and P. pastoris GS115 transfected with pPIC-lunasin expression vector. These recombinant lunasin peptides were similar to the synthetic lunasin peptide in the identification by LC-ESI-MS. In addition, the recombinant lunasin peptide from E. coli and P. pastoris was bound in the chromatin, and inhibited histone acetylation and the activity of histone acetyltransferase. These findings suggest that the production of the lunasin peptide using E. coli and P. pastoris will be useful for industrial utilization of lunasin peptide.