In this study, a process is developed for 3D printing with alumina (Al2O3). First, a photocurable slurry made from nanoparticle Al2O3 powder is mixed with hexanediol diacrylate binder and phenylbis(2,4,6- trimethylbenzoyl) phosphine oxide photoinitiator. The optimum solid content of Al2O3 is determined by measuring the rheological properties of the slurry. Then, green bodies of Al2O3 with different photoinitiator contents and UV exposure times are fabricated with a digital light processing (DLP) 3D printer. The dimensional accuracy of the printed Al2O3 green bodies and the number of defects are evaluated by carefully measuring the samples and imaging them with a scanning electron microscope. The optimum photoinitiator content and exposure time are 0.5 wt% and 0.8 s, respectively. These results show that Al2O3 products of various sizes and shapes can be fabricated by DLP 3D printing.
In this experiment no solvent based polyurethane(PU) adhesives were prepared with the polyol, isocyanate, dioctyl phthalate(DOP), 2-hydroxyethylacrylate(2-HEA) and other acrylate monomers. The softenening point of the PU adhesives measured by Ring & Ball method were examined in the present study. And adhesion strength and mechanical properties such as tensile strength and 100% modulus of the PU adhesives were evaluated by Universal Test Machine. The experimental results showed that increase of both DPE-41, benzoylperoxide(BPO) and toluene diisocyanate(TDI) increased softenening point, adhesion strength, tensile strength and 100% modulus. However as DOP content increased sofenening point, adhesion strength decreased and tensile strength, 100% modulus also decreased.