Cobalt (Co) is mainly used to prepare cathode materials for lithium-ion batteries (LIBs) and binder metals for WC-Co hard metals. Developing an effective method for recovering Co from WC-Co waste sludge is of immense significance. In this study, Co is extracted from waste cemented carbide soft scrap via mechanochemical milling. The leaching ratio of Co reaches approximately 93%, and the leached solution, from which impurities except nickel are removed by pH titration, exhibits a purity of approximately 97%. The titrated aqueous Co salts are precipitated using oxalic acid and hydroxide precipitation, and the effects of the precipitating agent (oxalic acid and hydroxide) on the cobalt microstructure are investigated. It is confirmed that the type of Co compound and the crystal growth direction change according to the precipitation method, both of which affect the microstructure of the cobalt powders. This novel mechanochemical process is of significant importance for the recovery of Co from waste WC-Co hard metal. The recycled Co can be applied as a cemented carbide binder or a cathode material for lithium secondary batteries.
There has been much interest in recycling electronic wastes in order to mitigate environmental problems and to recover the large amount of constituent metals. Silver recovery from electronic waste is extensively studied because of environmental and economic benefits and the use of silver in fabricating nanodevices. Hydrometallurgical processing is often used for silver recovery because it has the advantages of low cost and ease of control. Research on synthesis recovered silver into nanoparticles is needed for application to transistors and solar cells. In this study, silver is selectively recovered from the by-product of electrodes. Silver precursors are prepared using the dissolution characteristics of the leaching solution. In the liquid reduction process, silver nanoparticles are synthesized under various surfactant conditions and then analyzed. The purity of the recovered silver is 99.24%, and the average particle size of the silver nanoparticles is 68 nm.
폐 PCBs의 스크랩으로부터 염소-차아염소산염 용액을 이용하여 Au와 Ag를 친환경적이고 효과적으로 용출시키고자 하였다. PCBs에 Cu, Sn, Sb, Al, Ni, Pb, Au 등과 같은 유용금속이 함유되어 있는 것을 EDS 분석으로 확인하였다. 최대 Au 용출율은 1%의 광액농도, 2:1의 염산:차아염소산나트륨 그리고 2 M의 NaCl 농도조건이다. Au 회수율이 가장 높은 메타중아황산나트륨 농도는 3 M에서였다. 염소-차아염소산염이 폐 컴퓨터에 함유되어 있는 Au와 Ag를 효과적으로 용출시킬 수 있는 용매제 임을 그리고 메타중아황산나트륨이 Au를 간단하게 침전시킬 수 있는 첨가제임을 확인하였다.
본 연구 목적은 비-가시성 금 형태로 산출되는 황화광물 정광을 마이크로웨이브-질산용출하여 황화광물을 효과적으로 용해시키고자 하였고, 고체-잔류물을 납-시금법을 적용하여 금을 회수하고자 하였다. 따라서 질산농도, 용출시간 그리고 시료 첨가량 효과에 대하여 마이크로웨이브-용출실험을 각각 수행하였다. 고체-잔류물의 무게 감소율은 질산농도가 증가할수록 그리고 용출시간이 증가할수록 증가 하였지만 시료 첨가량이 증가하면 무게 감소율이 감소하였다. 마이크로웨이브-질산용출을 수행한 결과 질산농도 6 M에서, 마이크로웨이브 용출시간 18분에서 황철석이 완전히 사라진 것을 XRD 분석에서 확인하였다. 고체-잔류물에 대하여 납-시금법을 수행한 결과, 질산농도가 증가할수록 그리고 용출시간이 증가할수록 함량이 증가된 금 입자들을 회수하였다. 반면에 시료 첨가량이 증가할수록 금 함량이 감소하는 입자들을 회수하였다.