검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 저온살균(60oC, 5-20분)과 대기압플라즈마(5- 20분)를 병용한 고춧가루 중의 E. coli 저감화 및 시너지 효과를 조사하였다. 저온살균 단일처리시 대장균의 불활 성화는 최대 2 log10 CFU/g(=99% 감소) 이상 나타내었으며, 대기압플라즈마 5, 10, 15, 및 20분간 단일처리 하였을 때 각각 0.4, 0.8, 0.9 및 1.4 log10 CFU/g 감소되었다. 저온 살균 및 대기압플라즈마 단독 처리만으로는 만족할 만한 미생물 저감화효과를 얻을 수 없었기에 저온살균 처리 후, 대기압플라즈마를 병용처리 하여 대장균의 불활성화는 1- 6 log10 CFU/g 이상 감소되었다. 그러나, 저온살균과 대기 압플라즈마 병용처리에 따른 관능적 품질 (색, 이취, 맛, 조 직감 및 전체적인 기호도)에 대한 유의적인 차이는 관찰 되지 않았다(P>0.05). 따라서 고춧가루의 미생물학적 안전성 확보를 위해 저온살균과 대기압플라즈마 단독처리보다 이 둘의 병용처리가 E. coli의 확실한 저감화 효과를 유도 하고 식품 고유의 품질특성을 유지하는데 효과적이었음을 본 연구를 통해 확인되었다.
        4,000원
        2.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a relatively effective process is used to sterilize Escherichia coli on the surface of micro-sized calcium citrate powder using nitrogen and argon as process gases in a low-temperature vacuum plasma treatment. The purpose of this study is to confirm and to introduce the effectiveness of homogeneous surface treatment for the sterilization of fine inorganic powder by the rotatable low-temperature RF plasma system designed by ourselves. The results of the test using 3M petrifilm showed that there were no remarkable spots in the case of the surface of plasma treated powder, whereas the untreated powder showed many blue spots, which indicating that the E. coli was alive. After 5 days, in the same samples, the blue spots were seen to be larger and darker than before, while the plasma-treated powder showed no changes. The results from FE-SEM analysis showed that the E. coli was damaged and/or destroyed by reactive species generated in the plasma space, resulting in the E. coli being sterilized. Furthermore, the sterilization effects according to the selected parameters (N2 and Ar; flow rate 30 and 50 sccm) adapted in this study were mutually similar, regardless of such different process parameters, and this indicates that homogeneous treatment of powder surfaces could be more effective than conventional methods. Therefore, the plasma apparatus used in this study may be a practical method to use in a powerful sterilization process in powder-type food.
        4,000원
        3.
        2015.12 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to investigate the antibacterial effect of the low temperature atmospheric plasma device with needle tip designed for easy approach to the oral cavity and root canal against Streptococcus mutans, Enterococcus faecalis and Candida albicans. The antibacterial activities evaluated by measuring clear zone of agar plate smeared with each bacteria after plasma treatment. To quantify antibacterial effects, dilution plate method was used. In addition, scanning electron microscope (SEM) was used for observation of changes in bacterial morphology. As treatment time of plasma increased, the clear zone was enlarged. The death rate was more than 99%. The SEM results showed that the globular shape of bacteria was distorted. These results suggest that needle tip plasma could be an innovative device for prevention of dental caries, and treatment of apical infection and soft tissue diseases.
        4,000원
        4.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an oxygen plasma treatment was used as a low temperature debinding method to form a conductive copper feature on a flexible substrate using a direct printing process. To demonstrate this concept, conductive copper patterns were formed on polyimide films using a copper nanoparticle-based paste with polymeric binders and dispersing agents and a screen printing method. Thermal and oxygen plasma treatments were utilized to remove the polymeric vehicle before a sintering of copper nanoparticles. The effect of the debinding methods on the phase, microstructure and electrical conductivity of the screen-printed patterns was systematically investigated by FE-SEM, TGA, XRD and four-point probe analysis. The patterns formed using oxygen plasma debinding showed the well-developed microstructure and the superior electrical conductivity compared with those of using thermal debinding.
        4,000원
        5.
        2009.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon dioxide as gate dielectrics was grown at 400˚C on a polycrystalline Si substrate by inductively coupled plasma oxidation using a mixture of O2 and N2O to improve the performance of polycrystalline Si thin film transistors. In conventional high-temperature N2O annealing, nitrogen can be supplied to the Si/SiO2 interface because a NO molecule can diffuse through the oxide. However, it was found that nitrogen cannot be supplied to the Si/SiO2 interface by plasma oxidation as the N2O molecule is broken in the plasma and because a dense Si-N bond is formed at the SiO2 surface, preventing further diffusion of nitrogen into the oxide. Nitrogen was added to the Si/SiO2 interface by the plasma oxidation of mixtures of O2/N2O gas, leading to an enhancement of the field effect mobility of polycrystalline Si TFTs due to the reduction in the number of trap densities at the interface and at the Si grain boundaries due to nitrogen passivation.
        4,000원
        6.
        1995.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Canola(Brassica napus) 엽에서 추출한 미세막으로부터 PEG-dextran 2상분획법을 이용하여 세포막과 세포내막을 분리하였다. U2 상에 있는 원형질막의 K+-ATPase의 특이활성도가 미세막에 비하여 25℃에서 자란 canola는 6.6배, 10℃에서 4.6배 각각 증가되었다. 원형질막(U2)은 미세막이나 세포내막(L2) 보다 cytochrome-c-oxidase 활성이 적게 나타난 반면, 세포내막에서는 K+-ATPase의 특이활성도가 가장 적게 나타났다. 10℃에서 생장한 canola의 18:3/18:2 률은 25℃보다 29.2% 더 높게 나타났다. 원형질막의 2중결합지수는 10℃에서 생장한 canola가 25℃에서 생장한 것보다 8.9% 더 증가되었으며 세포내막에서도 같은 경향으로써 10℃에서 19.7% 더 증가되는 현상을 보였다. 또한 엽록소 함량은 10℃에서 생장한 것이 25℃에 비하여 17.3% 낮았다. Canola가 저온에서 생장시 주로 C18 지방산들이 변화되어, 세포막 내에 불포화 지방산이 많았으며, 그 중에서도 리롤렌산(18:3)이 크게 변화되는 현상을 보였다. 이러한 변화는 생리적으로 canola의 세포막이 저온에 살아가기 위한 하나의 수단으로 추정된다.
        4,000원
        7.
        2016.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Activity of the noncontacted low temperature atmospheric pressure surface discharged plasma (LASDP) converts stable gas to ionized gas known as discharge or plasma. This ionized gas exhibits the antimicrobial activity. We examined the effects of 3 different storage treatments for 80 days on ‘Setoka’ : ambient storage (AS), low-tempperature storage (LTS), and low-temperature atmospheric pressure plasma+low-tempperature storage (PLTS). Total soluble solids showed no the significant differences between the 3 treatments. Acidity gradually decreased, and was 0.5% under AS after 30 days of storage. Fruit firmness increased by a few percent until 40 days of storage. Weight loss in AS was higher than for other treatments. After 80 days of storage, the decay ratio was significantly low in PLTS treatment: (AS, 50.5%; LTS, 5.6%; PLTS, 1.9%). In AS treatment, 73% of the rotten fruits were infected particularly with green and blue mold; however, only 1% of the rotten fruits were infected in case of PLTS treatment. In conclusion, LASDP treatment can pre
        8.
        2013.08 KCI 등재 서비스 종료(열람 제한)
        Ozone concentrations in water and air, and resulting disinfective properties, were measured following generation by either an ozone generator or a low-temperature dielectric barrier discharge plasma generator. In freshwater, ozone concentrations of 0.81 and 0.48 mg/L O3 were observed after the ozone and plasma generators had been operated for five minutes, respectively. Higher levels of dissolved O3 were attained more easily with the ozone generator. In seawater, both systems were capable of creating concentrations greater than 3.00 mg/L O3 after 5minutes of operation. Higher ozone levels were attained more easily in seawater than in freshwater. Rates of bacterial sterilization in seawater after three minutes were 96% and 88%, using the plasma and ozone generators, respectively. In freshwater, higher concentrations of ozone were released into the atmosphere by the ozone generator than by the plasma generator. In creating equivalent levels of dissolved ozone in freshwater, the plasma generator released 4.5 times more ozone into the atmosphere than did the ozone generator. This shows that ozone generators are more effective than plasma generators for creating ozonated water. For the same concentration of dissolved ozone in seawater, more ozone was released into the atmosphere using the ozone generator than using the plasma generator. Therefore, with regard to air pollution, plasma generators seem to be less expensive than ozone generators.
        9.
        2012.10 KCI 등재 서비스 종료(열람 제한)
        We studied the ozone concentrations generated by low-temperature dielectric barrier discharge plasma reactor after adding air and phytoplankton to control the ozone concentrations in seawater. We also examined the numbers of bacteria and Vibrio spp. after treatment using the plasma reactor. As the airflow rate was increased, more ozone was removed. Although marked variation in the ozone decrease was observed with and without airflow, the rate of ozone removal did not increase proportionately with the airflow rates. The ozone concentration decreased with increasing organic matter and time. The amount of organic matter seems to be an important factor decreasing the dissolved ozone concentration in liquid. The ozone concentration was 0.07, 0.32, 1.28, and 2.3 mg/L when operating the plasma reactor for 30, 60, 180, and 300 s, respectively; i.e., the ozone concentration increased with the reactor operating time. The initial numbers of bacteria and Vibrio spp. were 800 and 480 CFU/mL, respectively. After operating the plasma reactor at a flow rate of 6 L/min for 30 s, no bacteria or Vibrio spp. were detected. The disinfection effect of this plasma reactor seems to be superior to that of a conventional ozone generator.