검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electroconvection generated on the surface of an ion exchange membrane (IEM) is closely related to the electrical/ chemical characteristics or topology of the IEM. In particular, when non-conductive regions are mixed on the surface of the IEM, it can have a great influence on the transfer of ions and the formation of nonlinear electroconvective vortices, so more theoretical and experimental studies are necessary. Here, we present a novel method for creating microscale non-conductive patterns on the IEM surface by laser ablation, and successfully visualize microscale vortices on the surface modified IEM. Microscale (~300 μm) patterns were fabricated by applying UV nanosecond laser processing to the non-conductive film, and were transferred to the surface of the IEM. In addition, UV nanosecond laser process parameters were investigated for obvious micro-pattern production, and operating conditions were optimized, such as minimizing the heat-affected zone. Through this study, we found that non-conductive patterns on the IEM surface could affect the generation and growth of electroconvective vortices. The experimental results provided in our study are expected to be a good reference for research related to the surface modification of IEMs, and are expected to be helpful for new engineering applications of electroconvective vortices using a non-conductive patterned IEM.
        4,000원
        2.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : A methodology for estimating micro-emission factors using vehicle trajectory data collected from navigation and DTG devices and basic emission factors for each vehicle type of the MOtor Vehicle Emission Simulator (MOVES) is presented. The methodology can calculate micro-emissions based on only the traffic volume and average speed for each vehicle type. METHODS : Cluster analysis was performed by accumulating the trajectories of individual vehicles on a specific road section into speed groups in which vehicles drove with the same range of average speed. Then, the micro-emission factors were estimated for each speed group. RESULTS : Using the vehicle trajectory data revealed that the emissions calculated from micro-emission factors estimated by the proposed methodology were similar to the sum of the emissions calculated from the vehicle trajectories for each vehicle. CONCLUSIONS : The micro-emission factor database for each road type and vehicle type proposed in this study should be useful for estimating vehicle emissions on the road. The proposed method can calculate emissions in the same way as the macroscopic analysis method, using the traffic volume, average speed, and link length.
        4,000원
        3.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A magnetic abrasive finishing process was proposed for improving the surface accuracy of microscale -diameter STS 304 bar used in many applications such as, medical, aerospace, and nuclear industries. Most of the previous research has already explored the conventional finishing technique to improve the accuracy of material in terms of the surface roughness. However, their results are still not good enough for the requirement in the today’s engineering industry. Especially, when the workpiece is a material of microscale-diameter, use of such conventional processes becomes impossible because they entail the application of high pressures that may damage the surface to be finished. Moreover, less control is available over these conventional finishing processes. In this study, an ultra-high-precision magnetic abrasive finishing process was applied to the precision machining of microscale-diameter STS 304 bar and the experimental work are performed with many critical parameters such as, different workpiece revolution speeds, abrasive grain sizes, different finishing temperatures, and pole vibrations. The results showed that in The initial surface roughness of 0.20 μm (Ra) was decreased to 0.025 μm with 0.5 μm of abrasive grain size and pole vibration 12Hz at 40,000 rpm.
        4,000원
        4.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study proposes a methodology to collect data necessary for microlevel emission estimation, such as second-by-second speeds and road grades, and to accordingly estimate emissions. METHODS: To ease data collection for microlevel emission estimation, a vehicle equipped with speed- and location-recording instruments as well as equipment for measuring road geometry was used. As a case study, this vehicle and the proposed methodology were used on a 10- km-long highway in Yongin City, Korea. Emissions from the vehicle during driving were estimated in various microscale driving conditions. RESULTS : Differences in the estimated emission under different microscale driving conditions cannot be ignored. Compared with the estimations obtained when second-by-second data were not considered, CO and NOx emissions were more than threefold higher when considering second-by-second speed; similarly, CO and NOx emission estimations were higher by approximately 10% and 3%, respectively, when considering second-by-second road grade. CONCLUSIONS : The proposed method can estimate vehicle emissions under real-world driving conditions in such applications as road design and traffic policy assessments.
        4,200원
        5.
        2006.04 구독 인증기관·개인회원 무료
        The behaviour of steel powder compacts during sintering has been investigated by dilatometry and X-ray computed microtomography. Dilatometry measurements showed that the anisotropic deformation results from various phenomena arising at different moments of the cycle including the delubrication stage. Microtomography provided 3D images of the microstructure induced by prior die pressing and its changes throughout sintering. Finally a schematic description of the main phenomena responsible for the deformation of metal powder compacts during sintering is proposed.