검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 95

        43.
        1999.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To evaluate the bacterial reverse mutation of xylooligosaccharide(XO)s the in vitro Ames test using Salmonella typhimurium (TA98, TA100, TA1535, TA1537) and Escherichia coli (WP2 uvrA) was performed. XO was negative in Ames test with Salmonella typhimurium and Escherichia coli with and without rat liver microsomal enzyme (S-9 fraction). According to the results, XO does not cause bacterial reverse mutation.
        4,000원
        47.
        2020.08 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        This study analyzes the new GMCF method applied by the company with the aim to find out how the production of Accounting Information Systems (AIS) implemented by the company can be managed properly. The study also seeks to find out whether the company needs new system support facilities to facilitate the production performance reporting process of each division and evaluate the performance of GMCF systems in the company. The methods used are descriptive analysis techniques and statistical tests of Paired Sample T-Test comparison; this study uses production data of each unit of a product with random sampling to determine the level of product damage and compare production with the GMCF system and prior to using it. The results of the analysis found that the application of goods mutation control forms (GMCF) greatly influenced the smooth production reporting process, which resulted in an increase in achieving production targets and reducing the risk of product damage during the production process. The company also benefits from the efficiency of production costs when using the GMCF system and can quickly design policies for products that are damaged during the production process. In addition, the company can have damaged products repaired faster than before.
        48.
        2017.12 서비스 종료(열람 제한)
        Genetic factors are increasingly found as potential causes of children with acute recurrent pancreatitis (ARP) or chronic pancreatitis (CP). Representative genes include cationic trypsinogen, serine protease 1 (PRSS1), serine protease inhibitor Kazal type 1 (SPINK1), cystic fibrosis transmembrane conductance regulator (CFTR), chymotrypsin C (CTRC) and calcium sensing receptor (CASR) genes, etc. In Korean children, PRSS1 and SPINK1 genes have been most commonly studied, while CFTR mutations were reported in one patient to date. We report a case of a 13-year-old male adolescent with CP with CFTR mutations. Since he was first diagnosed with idiopathic acute pancreatitis (IAP) based on laboratory and computed tomographic findings, he was admitted with ARP and CP over four times in a year at the secondary and tertiary hospital. No etiology was detected by several examinations including magnetic resonance cholangiopancreatography (MRCP), endosco-pic retrograde cholangiopancreatography (ERCP), endoscopic ultrasonography (EUS) with fine needle aspiration (FNA) biopsy and genetic test including PRSS1 and SPINK1. Although he had no typical symptoms associated with cystic fibrosis (CF), CFTR mutations were detected with additional gene examination. Testing for CFTR mutations should be concerned in pediatric patients with APR and CP without other identified causes.
        49.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to compare the survival and mutation rates and mutation spectrum by gamma-irradiation on rooted and unrooted cuttings of three spray type (‘Lovelydia’, ‘Yellowbabe’, and ‘Haetsal’) and two standard type (‘Vital’ and ‘Aqua’) cultivars in roses. Two groups, rooted and unrooted cuttings were gamma-irradiated at 70Gy for 24 hours. The irradiated rooted and unrooted cuttings were planted in a greenhouse, and survival, mutation rates and mutation spectrum were investigated 30 weeks after planting, respectively. As a result, survival and mutation rates ofgamma-ray irradiated plants were 16.4%~50.8% and 0~5.1% for unrooted cuttings, and 39.4%~55.1% and 0.7%~7.4% for rooted cuttings, respectively. In conclusion, both survival and mutation rates were a little higher on rooted cuttings than on unrooted cuttings. However, when only survived plants after gamma-ray irradiation were considered, mutation rates were 0~10% and 1.8%~14.1% for unrooted cuttings and rooted cuttings, respectively, showing no significant difference. In addition, diverse variations on color and number of petals or shape of flowers were detected both in plants from rooted and unrooted cuttings, which indicated that there was no significant difference in mutation spectrum between two groups.
        50.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        To develop a dwarf turfgrass (Zoysia japonica) cultivar with artificial mutation-induced breeding method, the wild type control "Gosan" plants were exposed to a 30 Gy gamma ray source in 2010. The mutant lines showing short height were selected from successive generations. One of the resulting dwarf lines obtained was registered under the cultivar name of “Halla Green 1” (2016). The dwarf phenotype of the Halla Green 1 includes a reduction of the height by 4.5-fold, an increase in leaf and third internode lengths by about 6- and 2.3-fold, respectively, compared to the Gosan, and approximately 2.4-, 3.8-, and 1.5-fold relative to the Zenith, respectively. In addition, the Halla Green 1 had a sheath of darker green coloring compared to the light green Gosan and Zenith. The leaf blades of Gosan, Zenith and Halla Green 1 were all light green, whereas their stolons were purple, yellow-green and light purple, respectively. Trichomes presented on both adaxial and abaxial surfaces of the Gosan’s leaves, and only on the adaxial side of the Zenith’s leaves, but none on the Halla Green 1 leaves. The Halla Green 1 exhibited sufficiently distinct morphological traits when compared with the wild type Gosan and Zenith that the dwarf phenotype enhances its commercial viability.
        51.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        A new soybean cultivar ‘Wonhyun’, was developed by mutation breeding technique using a 250 Gy gamma ray at Korea Atomic Energy Research Institute (KAERI) in 2010. ‘Wonhyun’ has black seed coat and much better agronomic performance than original variety ‘Paldal’. Their total yield (177.1kg/10a) is much higher than that of ‘Paldal’ (126.9 kg/10a). Also, 100 seed weight of Wonhyun was 27g compared to ‘Paldal’ (13.7g). Contents of 4 essential amino acids such as aspartic acid, glutamic acid, lysine, arginine and unsaturated fatty acid including linoleic and linolenic acid have much higher than ‘Paldal’. This cultivar is good for cooking with rice as improved functional ingredient soybean.
        52.
        2015.07 서비스 종료(열람 제한)
        Myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytic acid, accumulates in large quantities in plant seeds, serving as a phosphorus reservoir, but is an animal antinutrient and an important source of water pollution. Here we report that Gle1 (GLFG lethal 1) in conjunction with InsP6 functions as an activator of the ATPase/RNA helicase LOS4 (Low expression of osmotically responsive genes 4), which is involved in mRNA export in plants, supporting the Gle1-InsP6-Dbp5 (LOS4 homolog) paradigm proposed in yeast. Interestingly, plant Gle1 proteins have modifications in several key residues of the InsP6-binding pocket, which reduce the basicity of the surface charge. Arabidopsis Gle1 variants containing mutations that increase the basic charge of the InsP6-binding surface show increased sensitivity to InsP6 concentrations for the stimulation of LOS4 ATPase activity in vitro. Expression of the Gle1 variants with enhanced InsP6 sensitivity rescues the mRNA export defect of the ipk1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) InsP6-deficient mutant, and furthermore, significantly improves vegetative growth, seed yield, and seed performance of the mutant. These results suggest that Gle1 is an important factor responsible for mediating InsP6 functions in plant growth and reproduction, and that Gle1 variants with increased InsP6 sensitivity may be useful for engineering high-yielding low-phytate crops.
        53.
        2015.07 서비스 종료(열람 제한)
        Lesion mimic mutants commonly display spontaneous cell death in pre-senescent green leaves under normal conditions, without pathogen attack. Despite molecular and phenotypic characterization of several lesion mimic mutants, the mechanisms of the spontaneous formation of cell death lesions remain largely unknown. Here, we examined the rice lesion mimic mutant spotted leaf3 (spl3). In mutants grown under a light/dark cycle, spl3 mutants appeared similar to wild type at early developmental stages, but lesions gradually appeared in the mature leaves close to heading stage. By contrast, in mutants grown under continuous light, severe cell death lesions formed in developing leaves, even at the seedling stage. Histochemical analysis showed that hydrogen peroxide accumulated in the mutants, likely causing the cell death phenotype. By map-based cloning and complementation, we showed that a 1-bp deletion in the first exon of Oryza sativa Mitogen-Activated Protein Kinase Kinase Kinase1 (OsMAPKKK1)/OsEDR1/ OsACDR1 causes the spl3 mutant phenotype. We found that the spl3 mutants were insensitive to abscisic acid (ABA), showing normal root growth in ABA-containing media and delayed leaf yellowing during dark-induced and natural senescence. Expression of ABA signaling-associated genes was also less responsive to ABA treatment in the mutants. Furthermore, the spl3 mutants had lower transcript levels and activities of catalases, which scavenge hydrogen peroxide, probably due to impairment of ABA-responsive signaling. Finally we discuss a possible molecular mechanism of lesion formation in the mature leaves of spl3 mutants.
        54.
        2015.07 서비스 종료(열람 제한)
        Soybean [Glycine max (L.) Merr.] have a variety of flower colors which are controlled by six different genes (W1,W2,W3,W4,Wm, and Wp). Among these genes, mutation in W3 gene causes near white flowers in the background of w4 genotype whereas the genotype W3w4 does purple throat flowers. Earlier studies showed that dihydroflavonol 4-reductase1 (DFR1) gene was closely linked to the flower color variants for W3 locus. In order to find out the W3 gene responsible for w3 phenotype, we first, studied the candidate gene Glyma14g07940 (DFR1) which is having 100% similarity with DFR probe sequence. Sequence analysis of DFR1 between W3 and w3 soybeans showed one base substitution in exon 6 of w3 mutant soybean resulting in one amino acid change in the amino acid sequence. However, comparison of amino acid sequences of DFR proteins from various crop plants showed that there is no functional change in the protein. Besides, the promoter analysis showed that, 311 bp of indel was traced in 5’-upstream promoter region of DFR1 gene in the w3 mutant. Here, we show that the near white or purple throat phenotypes in G. max is associated with existence or nonexistence of indel at 5’- upstream promoter region and low or high expression of DFR1, respectively. These results suggest that w3 phenotype may be caused by certain regulator of DFR1 gene located near or distant from DFR1 in G. max. In further study, we need to check the correlation between promoter indel with W3 expression level through GUS analysis.
        55.
        2015.07 서비스 종료(열람 제한)
        Ionizing radiation directly and indirectly affects gene expression within the plant genome. To access the physiological response of rice to different types of ionizing radiation, rice seeds were exposed to gamma-ray and ion beam radiation. Exposure to ionizing radiation dramatically decreased the shoot length compared with non-irradiated plants. Fluorescence-activated-cell-sorting (FACs) was used to measure DNA contents. There were significant correlations of dose-dependent between irradiated plant and non-irradiated plant. The radicals induced by the ionizing radiation in the plant could be observed by electron spin resonance (ESR). It was confirmed that the number of free radicals in cell was greatly increased all irradiated plants than non-irradiated plant. A significant positive correlation was shown between ionizing radiation dose and signal intensity. In order to determine the Genetic diversity, AFLP analysis was conducted with the irradiated plant and non-irradiated plant. Based on band patterns, the cluster analysis was conducted to evaluate the genetic variation by using the UPGMA (Unweighted Pair Grouping Method of Averages). Genetic diversity of irradiated plants by low dose ion beam was the closest non-irradiated plant and irradiated by high dose gamma-ray was the furthest from non-irradiated. We describe the detailed methods of ionizing irradiation and discuss its applications in genetic research as well as plant breeding.
        56.
        2015.07 서비스 종료(열람 제한)
        Map-based cloning is a basic method for identifying the mutated gene in plants. We selected the gametophytic mutant, named as AP-26-09, in activation-tagging pool. Mutant plant showed various kinds of pollen phenotype, such as the different number of nucleus or abnormal shapes. For the map-based gene cloning, we conducted phenotypic analysis of F2 mapping population through the screening of DAPI-stained pollen using fluorescence microscopy. Genomic DNA of F2 plants is prepared from leaves of approximately 1000 plants. In order to define chromosomal region where mutation is located, we designed SSLP markers and performed PCR amplification. In this study, we characterized gametophytic mutant and determined the chromosomal location using map-based approach.
        57.
        2015.07 서비스 종료(열람 제한)
        Rose (Rosa Hybrida Hort.) are of a high symbolic value and a great cultural importance in different societies. They are widely used as garden ornamental plants and as cut flowers. For the induction of mutation, gamma-rays are widely used as a mutagen. This study was carried out to establish a system for mutation breeding by irradiation of gamma-ray in rose. The rooted cuttings of five cultivar roses (Lovelydia, Vital, Aqua, Yellowbabe and Haetsal) are grown by in a greenhouse. They were two difference treatment (Before rooting gamma-ray irradiation, After rooting gamma-ray irradiation) were exposed to dose of 70 Gy using a 60Co gamma-irradiator (150 TBq of capacity ; ACEL, Canada) at the Korea Atomic Energy Research Institute. The irradiated plants were planted in a greenhouse, and investigated survival rate, mutation rate, flower buds number, and shoot length were planted after 80days. The two treatments of and growth characters was significantly reduced to 20% to 40% compared with the control. In addition, survival rate and mutation rate were ‘after rooting γ-ray irradiation (37.4~67.3% and 0.5~5.6%)’ higher than ‘before rooting γ-ray irradiation (18.3~50.8% and 0.3~3.4%)’. Mutation types were solid type, chimeric and mosaic petal mutants with various colors were induced from five rose. These results indicate that efficiency of mutation induction in rose by gamma-ray irradiation on petal colors and petal shapes in two difference treatment with rooted cutting system.
        58.
        2015.07 서비스 종료(열람 제한)
        Anthocyanin, a group of purple or reddish flavonoids, have been recognized as health-promoting functional food ingredients due to antioxidant activity. For this reason, plant breeders are trying to increase the anthocyanin contents using methods such as classical breeding and biotechnological approaches. To broaden the mutants population, seeds of colored wheat variety (K4191) were irradiated by using 250 Gy gamma irradiation. Individual 968 M4 plants were grown in Korea Atomic Energy Research Institute field. Many mutant phenotypes were shown: seed color variation, abnormal spike shape, awning formation, heading and ripening time, plant height, ripening period, super dwarf, etc. To identify the inheritance traits of colored-wheat, individual lines were maintained the spike base classified by generation. Characteristics per spike and plant were piled up to construct for mutant database. In the future, fixed descent will be analyzed the anthocyanin contents or other phytonutrients by ultra-performance liquid chromatography (UPLC). Expression of seed color-related transcription factors and anthocyanin biosynthetic pathway genes will be examined.
        60.
        2014.07 서비스 종료(열람 제한)
        Most of the melon(Cucumis melo L.) breeding lines in Korea show andromonoecious (male-perfect flowers) sex expression, which requires laborious hand emasculation to produce the F1 seeds. There is a high demand for developing monoecious (male-female flowers) elite germplasm. The present study was carried out to develop molecular markers for selecting monoecious plants based on the CmACS-7 gene [a locus with 1-aminocyclopropane-1-carboxylic acid synthase(ACS) activity] responsible for ethylene synthesis and sex determination in melon. The full length sequences of the CmACS-7 were cloned from a monoecious inbred ‘Mo23’ and an andromonoecious inbred ‘Am24’. Sequence alignment revealed a major SNP(C170T) in exon1 and 18bp indel in intron4 of the CmACS-7, and a CAPS (SNP-C170T) and SCAR (ID4-18) were developed from the SNP and indel, respectively. A total of 453 F2 plants derived from ‘Mo23’ x ‘Am24’ were determined for their sex expression and genotyped using the SCAR marker. A Mendelian ratio of 3(monoecy): 1(andromonoecy) was observed from the F2 population, and sex type of 449 plants (except for four plants that showed incomplete monoecy) cosegregated with the SCAR marker, demonstrating that CmACS-7 is a single dominant gene conferring monoecy of ‘Mo23’. Allele variation of the CmACS-7 was evaluated by genotyping 114 melon accessions with diverse geographical origins using the CAPS and SCAR. C170T-SNP in exon1 of the CmACS-7 was highly conserved in melon germplasm and perfectly matched with the phenotype, whereas the 18bp-indel mutation in intron4 existed in various forms. The results demonstrated that CAPS marker SNP-C170T can be useful for marker-assisted selection(MAS) of monoecious melon plants
        1 2 3 4 5