검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 59

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to evaluate the possibility of damage to cultural assets resulting from vibrations generated by construction vehicle traffic. The cultural heritage's natural vibration frequency was determined to be 150Hz by measurement. The damping ratios were calculated as 4.7% using the logarithmic decrement approach and 4.3% using the half-power method. The vibration measurements obtained during vehicle operation indicated that, despite an increase in vehicle velocity of up to 15 km/h, the vibrations remained below the detectable level of 0.13 mm/sec. When the road is curved and the terrain is sloped, a suitable speed for vehicle operation was found to be around 17 km/h, at which point vibrations were seen. The highest recorded vibration amplitude at this velocity was 0.217 mm/sec, which remains below the stringent regulation limit of 2 mm/sec. Thus, it can be concluded that there is no actual harm caused by vibrations.
        4,000원
        4.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Large space structures exhibit different natural vibration characteristics depending on the aspect ratio of structures such as half-open angle. In addition, since the actual large space structure is mostly supported by the lower structure, it is expected that the natural vibration characteristics of the upper structure and the entire structure will vary depending on the lower structure. Therefore, in this study, the natural vibration characteristics of the dome structure are analyzed according to the natural frequency ratio by controlling the stiffness of the substructure. As the natural frequency of the substructure increases, the natural frequency of the whole structure increases similarly to the natural frequency of the upper structure. Vertical vibration modes dominate at 30° and 45°, and horizontal vibration modes dominate at 60° and 90°.
        4,000원
        5.
        2018.05 구독 인증기관·개인회원 무료
        Pavement performance usually depends on the pavement’s material property, traffic and environmental conditions. Current pavement design programs such as the Mechanistic Empirical Pavement Design Guide use these factors in assessing the pavement life and performance in terms of different distresses like rutting and fatigue cracking. Theoretically, the cracking and rutting behaviour of pavements are based on accumulated strains experienced by the pavement which is brought by the weight and loading speed of vehicles. A steady state loading device was used in the field to evaluate pavement deflection’s behaviour in varying loading frequencies. It was observed that the pavement deflection increases as the loading frequency also increases until it approaches a certain frequency wherein the deflection decreases thereafter. In this study, a three-dimensional finite element pavement model was established using ABAQUS wherein the effect of the vehicle’s loading frequencies was analysed. The calculated static deflection and stress from the finite element (FE) model were found to have good correlation with the KENPAVE measured deflection and stress. The deflections of different pavement conditions were further studied and analysed by generating several pavement geometries and strength from the FE model using a frequency sweep response analysis. It was found that the geometric condition and the current modulus of the pavement can amplify the pavement deflection by a factor, β, depending on the loading frequency. The peak deflection was found to be occurring when the loading frequency approaches one of the pavement’s natural frequencies. Based on the finding from this study, the natural frequency is an important factor to be considered in designing pavements. Further study is recommended to understand more on how to minimize the effect of natural frequency to pavement life.
        6.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Following the earthquake that shook the city of Gyeongju, Korea, in 2016, it became apparent that research on the safety of cultural heritages against the seismic hazards is necessary in Korea. Predictions of how historically significant stone pagodas would behave the earthquakes anticipated in near future, which are the subject of this study, is also required. In this study, the dynamic characteristics of 15 cultural heritage designated stone pagodas of Korea were investigated, including natural frequency and damping ratio, and the stiffness of the stone material and its contact area were determined using eigenvalue analysis by assuming the stone pagodas to be multi-degree-of-freedom structures. The results of this study enable the structural modeling of stone pagodas using a finite element analysis program and the method is expected to be useful in assessing the structural safety of stone pagodas against vertical loads as well as lateral forces, including earthquakes. Also, by identifying the dynamic characteristics of the structures, the results of this study can be utilized as a nondestructive testing method to determine the rigidity of cultural heritage structures and to identify inherent problems. The natural frequencies of the Korean stone pagodas were measured to be within 3.5~8.3㎐, excluding cases with distinct natural frequency results, and it was determined that the natural frequencies of the stone pagodas are influenced by various parameters including the height and joint stiffness of the structures.
        4,000원
        7.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Theories for composite structures are too difficult for design engineers for construction. The purpose of this paper is to demonstrate to the practicing engineers, how to apply the advanced composite materials theory to the structures. In this study, the natural frequency of a laminated cantilever beam was studied. An ultrasonic testing platform was employed to resonate the beam, and its time domain signal was optically measured. The natural frequency was quantified through the fast Fourier transform of the waveform, and the result showed good agreement with a theoretical estimation from the Euler-Bernoulli beam theory. This study is expected to provide a dynamic evaluation technique for laminated cantilever beam structures.
        4,000원
        8.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        오늘날까지 적층 마이크로 외팔보의 고유진동수에 대하여 연구가 진행되었다. 마이크로 보는 실리콘 재질로 만들어 지지만, 그것의 상하 표면은 얇은 금 박막층(~30nm)이 증착되어 있다. 초음파 검사를 위해 초음파 테스트 플랫폼을 사용했으며, 시간영역 신호는 광학적으로 측정되었다. 고유진동수는 파형을 고속 Fourier 변환을 통해 정량화하였으며, 결과적으로 고전적인 보 이론과 일치하는 결과를 보여 주었다. 본 연구는 마이크로/나노스케일 재료와 마이크로 구조에 대한 동적평가기법 을 제공할 것으로 기대된다.
        4,000원
        9.
        2017.04 구독 인증기관·개인회원 무료
        In this paper, the method of vibration analysis for calculating the natural frequency is presented. This method is a simple but exact method of calculating natural frequencies corresponding to the modes of vibration for the cantilevered composite materials conical beam. The influence of natural frequency of the cantilevered composite materials conical beam is presented. This method may be extended to stability analysis of complex structureal elements.
        10.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Theories of advanced composite structures are too difficult for such field engineers and some simple methods are necessary. In this paper, Simple method of vibration analysis is presented. This method presented in this paper is studied self-weight and other loads. The result of the 2~3 times iteration is good enough for field engineering purposes. In the case of cantilevered composite materials beams with different cross section, increase of mass near the support does not significantly affect the vibration characteristics. As a calculations of the simple method of vibration analysis for cantilevered composite materials beams with different cross section, it is noted that the result of the second cycle at the point of free end (actually 5L/6 span) is only 2.2% away from the ‘exact’ solution.
        4,000원
        11.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyze the dynamic response property of latticed domes according to natural frequency ratio of substructure. Through eigenvalue analysis, it is was confirmed that the half-open angle 30° and 45° dominate vibration mode of the vertical direction and the half-open angle 60° and 90° dominate vibration mode of the horizontal direction. Through the dynamic response analysis, it is was confirmed that the first frequency about total structure largely appears about the vertical and the horizontal direction regardless of half-open angle.
        4,000원
        13.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigate the dynamic response changes of rib dome structure according to property changes of Substructure. Eigenvalue analysis is conducted in first natural frequency of rib dome versus substructure and searched in the dominant mode of horizontal and vertical direction. Resonance frequency by each first natural frequency of the rib dome structure, substructure and total structure is applied for a seismic wave. That is analyzed about maximum displacement response ratio and maximum acceleration response ratio.
        4,000원
        14.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper. the effects of the aspect ratio on the natural frequency of the advanced composite road structures is studied. The advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. Some laminate orientations have decreasing values of  ,  ,  and  stiffnesses as the ply number increases. The plate aspect ratio considered is from 1 to 5. Most of the road structures have large aspect ratios, for such cases further simplification is possible by neglecting the effect of the longitudinal moment terms.
        4,000원
        15.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Wind turbine tower has a very important role in wind turbine system as one of the renewable energy that has been attracting attention worldwide recently. Due to the growth of wind power market, advance and development of offshore wind system and getting huger capacity is inevitable. As a result, the vibration is generated at wind turbine tower by receiving constantly dynamic loads such as wind load and wave load. Among these dynamic loads, the mechanical load caused by the rotation of the blade is able to make relatively periodic load to the wind turbine tower. So natural frequency of the wind turbine tower should be designed to avoid the rotation frequency of the rotor according to the design criteria to avoid resonance. Currently research of the wind turbine tower, the precise research does not be carried out because of simplifying the structure of the other upper and lower. In this study, the effect of blade modeling differences are to be analyzed in natural frequency of wind turbine tower.
        4,000원
        16.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper examines the pounding problem between adjacent decks subjected to strong earthquakes. The elastomeric bearings in an isolated bridge reduce the stresses on the superstructure and cushion the impact by transferring smaller seismic forces to the substructure. On the other hand, these bearings also allow large horizontal displacement of the superstructure due to seismic forces. Bridges having various supporting soil conditions and different frequency ratios between adjacent decks are investigated by numerical analysis. In the analysis, decision making is conducted whether the collision took place or not and, the magnitude of pounding force and the duration time of collision are obtained and the results are discussed.
        4,000원
        17.
        2014.04 구독 인증기관·개인회원 무료
        Natural frequency characteristic of Wind turbine tower is important for designing of tower due to guarantee of structural safety of tower. In GL specification, natural frequency of tower should be designed by consideration of blade rotational frequency. Natural frequency characteristic of tower could be changed by mass ratio of RNA-tower, modeling method of blade and angle of blade in idling condition. In this research, natural frequency of tower is analysed by ABAQUS and compared it result according to tower dimension.
        18.
        2013.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        According to natural frequency of soil, characteristics of earthquake responses of an isolated containment building in nuclear power plants are examined. For this, earthquake response analysis of seismically isolated containment buildings in nuclear power plants is carried out by strictly considering soil-structure interactions. The structure and near-field soil are modeled by the finite element method while far-field soil by consistent transmitting boundary. The equation of motion of a soil-structure interaction system under incident seismic wave is derived. The derived equations of motion are solved to carry out earthquake analysis of a seismically isolated soil-structure system. Generally, the results of this analysis show that seismic isolation significantly reduces the responses of the soil-structure system. However, if the natural frequency of the soil is similar to that of the soil-structure system, the responses of the containment buildings in nuclear power plants rather increases due to interactions in the system.
        4,200원
        19.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Long span arch structure is composed of arch as relatively flexible structure and column as relatively rigid structure. In this study, the characteristic of dynamic response is analyzed according to the natural frequency ratio between arch and columns. The result of analysis for arch as relatively vertical vibration mode is dominant, the influence of columns mainly appears at relatively high frequency band according to increase of 1st mode frequency in column. However, the dynamic characteristic of arch structure is expected to vary with not only frequency ratio but interaction between vibration modes of arch and columns.
        4,000원
        20.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper aims to give a guideline and the way to apply the advanced composite materials theory to the road structures with different cross sections to the practicing engineers. METHODS: To simple but exact method of calculating natural frequencies corresponding to the modes of vibration of road structures with different cross sections and arbitrary boundary conditions. The effect of the D22 stiffness on the natural frequency is rigorously investigated. RESULTS: Simple method of vibration analysis for calculating the natural frequency of the different cross sections is presented. CONCLUSIONS: Simple method of vibration analysis for calculating the natural frequency of the different cross sections is presented. This method is a simple but exact method of calculating natural frequencies of the road structures with different cross sections. This method is extended to be applied to two dimensional problems including composite laminated road structures.
        4,000원
        1 2 3