검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.05 구독 인증기관·개인회원 무료
        The Derived Concentration Guideline Level (DCGL) using RESRAD code is generally obtained for the reuse of the site and remaining buildings of the decommissioning of nuclear facilities. At this time, the evaluation first considers wide DCGL assuming homogenous contamination for the entire target site. The DCGL derived through this will be compared with the actual contamination measured at the Final Status Survey (FSS) stage to determine whether the site is compliance with criteria. Guidelines for Survey units are presented in MARSSIM and suggested in Class 1 through 3. Therefore, DCGL for the survey unit of a certain smaller area is established by applying a correction factor from wide DCGL, which is define as an Area Factor (AF). Therefore, this study reviewed the AF applied in overseas cases, reviewed the necessary factors for derivation, and compared them by applying factors to the preliminary experimental target area for domestic nuclear installations. The AF is the ratio of the dose from the base-case contaminated area to the dose from a smaller contaminated area with the same radioactive concentration. To this end, an unrestricted resident farmer scenario was applied as the site reuse scenario, which deals with all exposure pathways considered in the RESRAD. The potential exposure pathways considered in resident farmer scenarios are largely divided into external and internal exposures, which are based on NUREG/CR-5512. In addition, in order to calculate the AF, a change in the contaminated area occurs, and accordingly, a variable that varies according to the area, i.e., length parallel to aquifer flow (LCZPAQ), the contaminated fraction of plant food ingested (FPLANT), the contaminated fraction of meat and milk (FMEAT and FMILK), is accompanied. As the contamination area decreases, these variables decrease, and the criteria for reduction were reflected through overseas cases. In this study, three nuclides (C-14, Co-60, and Cs-137) were assumed as representative nuclides, and the area of the contaminated site was selected as 50,000 m2 and reduced at a certain rate. As a result, each nuclide showed different characteristics, but in general, AF increases as the area decreases. Compared to the area of this study, AF values were calculated to be smaller than those of overseas cases, but it was confirmed that the area of the values showed similar patterns. In addition, in the case of C-14, the slope of AF increased rapidly as the area decreased, while Co-60 and Cs-137 showed similar slopes.
        2.
        2023.05 구독 인증기관·개인회원 무료
        After permanent shutdown, contamination existing in nuclear facilities must be removed according to decontamination and dismantling procedures to achieve the target end state. In Korea, Korea Research Reactor (KRR) Units 1, 2 are being decommissioned, and Kori Unit 1 is in the process of reviewing the final decommissioning plan for the start of decommissioning. In order to complete decommissioning of nuclear facilities, it is necessary to satisfy the dose criteria according to the residual radioactivity remaining in the site and buildings. In the United States, which has a lot of experience in decommissioning, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) is used as a procedure for measuring and analyzing residual radioactivity. In MARSSIM, survey units are classified according to the level of contamination, and the radiation survey procedure and effort can be determined according to the survey unit level. After the radiological analysis and statistical verification of the survey unit, it is decided whether to release the site. At this time, the geographical area to be used as the background level is called the reference area. Therefore, selection of an appropriate reference area is important for accurate residual radioactivity analysis and for the release of the site. In this study, reference area evaluation cases and domestic decommissioning procedures were analyzed to derive considerations for selecting an appropriate reference area. For example, Zion NPP in the US selected a place outside the boundary of the restricted area unaffected by nuclear power plant operation as a reference area by referring to the meteorological monitoring report. Among Korea’s decommissioning procedures, the appropriateness of the reference area can be confirmed through the final status report submitted upon completion of decommissioning. However, since the selection and application of the reference area needs to be reflected during decommissioning, relevant information must be updated through periodic communication between operator and regulatory agency. The results of this study will be used as considerations for selecting a reference area.
        3.
        2022.05 구독 인증기관·개인회원 무료
        The design of nuclear fuel storage and handling area includes the activities related to the storage and inspection before fuel loading, transfer into the reactor, removal of irradiated fuel to the spent fuel storage rack, underwater handling and storage, and handling into a shipping cask. The purpose of this study is to provide the design requirements for the spent fuel pool to be prevented from the loss of cooling water and for heavy load control to prevent any load drop resulting in damage to safetyrelated systems during heavy load handling in accordance with the regulatory guidelines. And another purpose is to review the sizing of minimum wet storage capacity in the spent fuel pool based on the maximum refueling batch from the core during refueling plus a full core off-load of fuel assemblies and the minimum discharge burnup spent fuel storage during the design life of plant requested by the utility. As the results of this study, the current general arrangement for the spent fuel storage and handling area and the minimum storage capacity are evaluated. These can be good recommendations to enhance more safe and efficient if implemented to the new nuclear power plants.
        6.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        사용후핵연료 심지층처분장 부지선정과 최종 처분장부지의 처분적합성을 평가하는 업무는 시행-착오 를 줄이고 기술적 신뢰성 확보와 합리적이고 효율적인 업무수행을 추구하여야 한다. 이에 선행하여, 우리 나라에 적용 가능한 처분장부지의 지질환경 요건 설정을 위한 기본방향과 개별 인자의 처분적합성지표를 가능한 한 정량화하여 설정하고 업무에 적용하여야 한다. 사용후핵연료 처분장부지 선정과 최종처분장 부지의 안전성확보를 위한 처분요건과 관련하여 IAEA 및 OECD 회원국들과 처분연구 및 상용사업 수행 관련 선진국가들의 사례를 바탕으로 요건 별로 구분하여 현황을 분석하였다. 여기서는 사용후핵연료 처 분장 부지로서 암석·암반이 갖추어야 할 충분 혹은 선호요건에 대한 이해 제고와 관련 세부 기술지침을 도출하는데 기여하고자 하였다. 이를 토대로 어떠한 암석·암반이 상대적으로 보다 유리한 조건을 가지 는 선호요건으로 제시해야 하는지, 그리고 충분요건과 선호요건을 적용하여 후보부지 조사·선별평가 기 간 동안 부지선정업무에 반영하고 평가하고 결정하여야 하는 방법론을 도출할 수 있도록 기본 골격을 제 시하였다. 또한 처분안전성 확보를 위해 필요한 기본적인 사항을 검토하고 서술하였다. 본 논문에서 기술 한 항목들은 처분안전성 확보를 위한 처분요건의 기술지침 구성 체계, 처분안전성 확보개념, 다중방벽 기 능 조건, 천연방벽의 지질환경 기본요건, 그리고 우리나라에 적용 가능한 처분장부지 지질환경 기본요건 (안) 등으로 구성된다. 우리나라의 사용후핵연료 심지층처분장 부지의 위치에 관한 사업자 기술지침 요건 으로 제안하였다. 이와 관련하여 충분요건과 선호요건으로, 화산활동, 지진활동, 단층운동 융기·침강 운 동 및 기후·해수면변동 등 장기지질안정성 요건을 비롯한 15개 충분요건과 48개 선호요건을 제안하였 다. 이들 요건은 우리나라의 지질환경 특성을 충분히 반영하여 후속되는 각 부문별 특성에 적합한 정량적 인 기술 기준 및 지침으로 개발되어야 할 것이다. 정량적 기술지침의 도출은 상용 처분장부지 선별평가과 정 및 처분장 부지적합성평가 과정으로부터 확립될 수 있을 것이다. 또한 다양한 부문별 안전사례(safety case) 작성 혹은 연구용 지하처분연구시설 (underground research laboratory: URL)을 이용한 처분시스 템의 실증과정 등을 통하여 객관적이고 신뢰성있는 정량적인 지침들이 확립될 수 있을 것이다.
        4,500원