검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        3.
        2017.10 구독 인증기관·개인회원 무료
        The discontinuity movements of the Portland cement concrete (PCC) layer due to temperature fluctuations and traffic loading are primary causes of the reflection cracking in asphalt overlays. The thermal expansion and contraction of the discontinuities at the PCC layer induces tension at the bottom of the asphalt overlay layer creating excessive strains which causes cracking. The additional cyclic discontinuity movements from the thermal fluctuations and traffic loads propagates the cracks initiated until failure of the overlay layer. However, the crack behaviors of asphalt mixtures varies with temperature due to its viscoelastic property. As such, there is a need to investigate the cracking behavior of asphalt mixtures with varying temperatures and loading conditions. A modified overlay tester developed to evaluate the cracking resistance of asphalt mixtures in various loading directions and different confining temperatures was used to investigate the behavior of asphalt materials with various temperatures and loading conditions. The laboratory test was conducted in 2 segments. The first segment investigates the asphalt cracking behavior subjected to horizontal loading in 3 varying temperatures (10, 25 and 40C) which simulates the cyclic thermal contraction and expansion at the discontinuity. The second segment examines the cracking propagation of the asphalt mixture subjected to vertical loading in 3 varying temperatures. A load dissipation curve per loading cycle is generated in each test along with the images taken on the face of the specimen to monitor the crack propagation. Results have shown that asphalt mixtures undergo a 3-phase cracking behavior: initiation, propagation and failure. This is evident in the load dissipation curve when the initiation phase shows a rapid reduction of peak loads in first series of loading cycles which is followed by a slow and constant load reduction over a certain number of cycles. Failure occurs when there is a sudden decline in peak load and the percent reduction of the load is achieved. Figure 1 shows a fine dense grade asphalt mixture subjected to horizontal movement at 10C. Meanwhile, the load dissipation curve is further investigated by analyzing the images captured during testing. It can be seen that the first visible crack can be identified after 40 cycles which steadily propagates up to 600 cycles. However, between 600 and 700 loading cycles, there is a sudden dip in peak load which shows that at that the stage the crack has already propagated to the top of the test specimen as shown in Figure 2. Other tests have shown that the cracking patterns and load dissipation curves vary with different testing temperatures signifying that low temperature is more susceptible to early failure with constant differential movement. Further tests signify that using a general formula, parameters are calculated which refer to fracture properties of the material.
        5.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Reflection cracking has been one of the major causes of distress when asphalt pavement is laid on top of concrete pavement. This study evaluated the reflection cracking resistance of asphalt mixtures reinforced with asphalt embedded glass fiber and carbon fiber using a Texas Transportation Institute (TTI) overlay tester. METHODS : Different asphalt mixtures such as polymer-modified mastic asphalt (PSMA) and a dense graded asphalt mixture were reinforced with asphalt-embedded carbon fiber and glass fiber. For comparison purposes, two PSMA asphalt mixtures and one dense graded asphalt mixture were evaluated without fiber reinforcement. Two different overlay test modes, the repeated overlay test (R-OT) and monotonic overlay test (M-OT), were used to evaluate the reflection cracking resistance of asphalt mixtures at 0 ℃. In the R-OT test, the number of repeated load when the specimen failed was obtained. In the M-OT test, the tensile strength at the peak load and tensile strain were obtained. RESULTS : As expected, the fiber-reinforced asphalt mixture showed a higher reflection cracking resistance than the conventional nonreinforced asphalt mixtures based on the R-OT test and M-OT test. The dense graded asphalt mixture showed the least reflection cracking resistance and less resistance than the PSMA. CONCLUSIONS: The TTI overlay tester could be used to differentiate the reflection cracking resistance values of asphalt mixtures. Based on the R-OT and M-OT results, the carbon-fiber-reinforced asphalt mixture showed the highest reflection cracking resistance among the nonreinforced asphalt mixtures and glass-fiber-reinforced asphalt mixture.
        4,000원