검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates the microstructural properties of CoCrFeMnNi high entropy alloy (HEA) oxynitride thin film. The HEA oxynitride thin film is grown by the magnetron sputtering method using nitrogen and oxygen gases. The grown CoCrFeMnNi HEA film shows a microstructure with nanocrystalline regions of 5~20 nm in the amorphous region, which is confirmed by high-resolution transmission electron microscopy (HR-TEM). From the TEM electron diffraction pattern analysis crystal structure is determined to be a face centered cubic (FCC) structure with a lattice constant of 0.491 nm, which is larger than that of CoCrFeMnNi HEA. The HEA oxynitride film shows a single phase in which constituting elements are distributed homogeneously as confirmed by element mapping using a Cs-corrected scanning TEM (STEM). Mechanical properties of the CoCrFeMnNi HEA oxynitride thin film are addressed by a nano indentation method, and a hardness of 8.13 GPa and a Young’s modulus of 157.3 GPa are obtained. The observed high hardness value is thought to be the result of hardening due to the nanocrystalline microstructure.
        4,000원
        2.
        2016.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The properties of zinc oxynitride semiconductors and their associated thin film transistors are studied. Reactively sputtered zinc oxynitride films exhibit n-type conduction, and nitrogen-rich compositions result in relatively high electron mobility. Nitrogen vacancies are anticipated to act as shallow electron donors, as their calculated formation energy is lowest among the possible types of point defects. The carrier density can be reduced by substituting zinc with metals such as gallium or aluminum, which form stronger bonds with nitrogen than zinc does. The electrical properties of gallium-doped zinc oxynitride thin films and their respective devices demonstrate the carrier suppression effect accordingly.
        4,000원
        3.
        2009.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in SiOxNy films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between SiO2 and Si3N4. The Au nanoparticles were embedded in the SiOxNy matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 μm thick Au:SiOxNy nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using SiO2 matrix. The use of SiOxNy matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.
        4,000원