검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Developing the high-performance semiconductor photocatalytic materials is an eternal topic under the background of the current energy and environment requirements. In recent years, single-atom photocatalysts (SAPCs) have been brought a lot of attention in energy conversion and environmental purification because of their unique characteristics and properties, including the unique coordination patterns, outstanding atomic utilization, quantum confinement effects, high catalytic activity, etc. Hence, this critical review focuses on the summarized various synthetic methods and the recent important applications of SAPCs, including photocatalytic H2 evolution (PHE) from water splitting, photocatalytic CO2 reduction, photodegradation of organic pollutants, etc. The prospects and challenges for future research topics of SAPCs with excellent activity and stability for various photocatalytic applications are prospected at the end of this review. We sincerely expect that this critical review can promote deep-level insight into the SAPCs subject for the future significant applications in other fields.
        4,900원
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetically separable and reusable zinc ferrite/reduced graphene oxide ( ZnFe2O4/rGO) nanocomposite has been prepared by hydrothermal method. The results illustrate that the construction of ZnFe2O4 and rGO occur concurrently in a hydrothermal reaction that initiates the formation of rGO-wrapped ZnFe2O4 nanospheres. The morphological and structural features of the ZnFe2O4/ rGO nanocomposites reveal that the rGO nanosheets anchored to the ZnFe2O4 sphere act as a self-protective clamping layer to avoid the photo corrosion effect under photo irradiations. The nanocomposites express the soft magnetic behavior with high saturation magnetization under annealing temperature at 300 °C, which may attribute to the well-defined crystalline structure and surface defects. In addition, the GZF 300 nanocomposites exhibit the enhanced photocatalytic degradation over Rhodamine B dye which is 3.4, 1.15, and 1.32 times higher than that of ZF, GZF, and GZF 600 over under visible irradiation in 120 min. The GZF 300 nanocomposites demonstrate their ability to degrade RhB efficiently, even after several photocatalysis cycles with high catalyst recovery by its magnetically separable behavior. The high densities of oxygen defects improvise electron transfer from ZnFe2O4 to rGO and delay the recombination process of the nanocomposite, resulting in enhanced visible photocatalytic activity. The strong magnetic properties of rGO wrapped ZnFe2O4 nanocomposite catalysts the easy separation from the suspension system for multiple usages in water treatment.
        4,300원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The issue surrounding the problem of air pollution arising from rapid industrialization is one that is being continuously raised for discussion among the public, and concerns about indoor air quality have emerged both at home and abroad due to the longer periods of time spent indoors in modern times. Various studies are being conducted to solve this problem, and photocatalysts are also being studied as a solution. Accordingly, this research sought to verify the performance of reducing indoor pollutants by applying photocatalysts to building materials. As a result of evaluating the indoor pollutant reduction performance, it was confirmed that acetaldehyde was reduced by about 31%, toluene 29%, and total volatile compounds by 11%, and adhesion strength, an important factor regarding finishing material, was also enhanced 1.3 times or more based on Korean Industrial Standards. From these results, it is believed that indoor air pollution can be lowered to a certain extent through building materials using photocatalysts, and, therefore, research on long-term performance verification and evaluation methods should be continuously conducted and pursued in the future in relation to photocatalysts.
        4,000원
        5.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To improve photocatalytic performance, CdS nanoparticle deposited TiO2 nanotubular photocatalysts are synthesized. The TiO2 nanotube is fabricated by electrochemical anodization at a constant voltage of 60 V, and annealed at 500 for crystallization. The CdS nanoparticles on TiO2 nanotubes are synthesized by successive ionic layer adsorption and reaction method. The surface characteristics and photocurrent responses of TNT/CdS photocatalysts are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis spectrometer and LED light source installed potentiostat. The bandgaps of the CdS deposited TiO2 photocatalysts are gradually narrowed with increasing of amounts of deposited CdS nanoparticles, which enhances visible light absorption ability of composite photocatalysts. Enhanced photoelectrochemical performance is observed in the nanocomposite TiO2 photocatalyst. However, the maximum photocurrent response and dye degradation efficiency are observed for TNT/CdS30 photocatalyst. The excellent photocatalytic performance of TNT/CdS30 catalyst can be ascribed to the synergistic effects of its better absorption ability of visible light region and efficient charge transport process.
        4,000원
        6.
        2017.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Reactive oxygen species (ROS) can be produced by interactions between sunlight and light-absorbing substances in natural water environments and can completely destroy various organic pollutants in waste water. In this study, we used graphene oxide modified Ag2Se nanoparticles to enhance photochemically generated oxygen (PGO) species activity. Surface area and pore volumes of the Ag2Se-graphene (Ag2Se-G) samples showed catastrophic decrease due to deposition of Ag2Se. The generation of reactive oxygen species was detected through the oxidation reaction of DPCI to DPCO. The photocurrent density and the PGO effect increase in the case of the use of modified graphene. The PGO effect of the graphene modified with Ag2Se composites increased significantly due to a synergetic effect between graphene and the Ag2Se nanoparticles. The photocatalytic activity of sample was evaluated by measuring the degradation of organic pollutants such as methylene blue (MB) and industrial dyes such as Texbrite BA-L (TBA) under visible light.
        4,000원
        7.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study synthesized pure anatase carbon doped TiO2 photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/TiCl4. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported TiO2 nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the TiO2 layer, and the XPS data suggested the substitution of titanium in TiO2 by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported TiO2 nanocrystals prepared by pyrolysis at 300, 350, and 400ºC for 3 h on a stainless steel mesh were actual supported carbon doped TiO2 nanocrystals. Thus, PAN/DMF/TiCl4 offers a facile, robust sol-gel related route for preparing supported carbon doped TiO2 nanocomposites.
        4,300원
        8.
        2015.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        SnS-TiO2 nanocomposites are synthesized using simple, cheap, and less toxic SnCl2 as the tin (II) precursor. The prepared nanoparticles are characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectra (DRS). The XRD and TEM results indicate that the prepared product has SnS nanoparticles and a grain diameter of 30 nm. The DRS demonstrate that SnS-TiO2 possesses the absorption profile across the entire visible light region. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and photocatalytic effect increase with the modified SnS. Excellent catalytic degradation of Texbrite BA-L (TBA) solution is observed using the SnS-TiO2 composites under visible light irradiation. It is proposed that both the strong visible light absorption and the multiple exciton excitations contribute to the high visible light photocatalytic activity.
        4,000원
        9.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        가시광선에 감응하는 광촉매를 제조하기 위하여 TiO2에 질소(N)를 도핑하여 N-TiO2를 제조하였다. 제조한 광촉매의 결정성, 입자 형상 및 도핑 상태는 XRD, FE-SEM 및 XPS를 이용하여 조사하였다. 제조한 광촉매의 활성 평가는 메틸렌블루의 광분해로 조사하였다. 제조한 광촉매는 anatase type이었으며, pH가 높을수록 결정화도가 향상되었다. 제조한 광촉매의 입자 크기는 pH 2.0에서 5.42 nm, pH 4.7에서 5.99 nm, pH 9.0에서 7.58 nm로, 입자 크기는 pH가 증가 할수록 약간씩 증가하였다. 광촉매의 활성은 결정화도에 비례하였다. TiO2에 N를 도핑하여 제조한 N-TiO2가 가시광선 하에서도 활성을 나타냈다. TiO2에 도핑한 N는 격자 속에 존재하는 것이 아니라 표면에 존재하였다.
        4,000원
        10.
        2010.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we used coal-based activated carbons and charcoal as startingmaterials, phenolic resin (PR) as a binder, and TOS as a titanium source to prepare TiO2 combining spherical shaped activated carbon photocatalysts. The textural properties of the activated carbon photocatalysts (SACP) were characterized by specific surface area (BET), energy dispersive X-ray spectroscopy (XRD), scanning electron microscopy (SEM), iodine adsorption, strength intensity, and pressure drop. The photocatalytic activities of the SACPs were characterized by degradation of the organic dyes Methylene Blue (MB), Methylene Orange (MO), and Rhodamine B (Rh. B) and a chemical oxygen demand (COD) experiment. The surface properties are shown by SEM. The XRD patterns of the composites showed that the SACP composite contained a typical single, clear anatase phase. The EDX spectro for the elemental indentification showed the presence of C and O with Ti peaks. According to the results, the spherical activated carbon photocatalysts sample of AOP prepared with activated carbon formed the best spherical shape, a high BET surface area, iodine adsorption capability and strength value, and the lowest pressure drop, and the photocatalytic activity was better than samples prepared with charcoal. We compared the degradation effects among three kinds of dyes. MB solution degraded with the SACP is better than any other dye solutions.
        4,000원
        11.
        2010.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The composite photocatalysts of a Fe-modified carbon nanotube (CNT)-TiO2 were synthesized by a two-step sol-gel method at high temperature. Its chemical composition and surface properties were investigated by BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that the BET surface area was improved by modification of Fe, which was related to the adsorption capacity for each composite. Interesting thin layer aggregates of nanosized TiO2 were observed from TEM images, probably stabilized by the presence of CNT, and the surface and structural characterization of the samples was carried out. The XRD results showed that the Fe/CNT-TiO2 composites contained a mix of anatase and rutile forms of TiO2 particles when the precursor is TiOSO4·xH2O (TOS). An excellent photocatalytic activity of Fe/CNT-TiO2 was obtained for the degradation of methylene blue (MB) under visible light irradiation. It was considered that Fe cation could be doped into the matrix of TiO2, which could hinder the recombination rate of the excited electrons/holes. The photocatalytic activity of the composites was also found to depend on the presence of CNT. The synergistic effects among the Fe, CNT and TiO2 components were responsible for improving the visible light photocatalytic activity.
        4,000원
        12.
        2010.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, Fe-TiO2 and Fe-fullerene/TiO2 composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. TiO2, Fe-TiO2 and Fe-fullerene/TiO2 were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. XRD patterns of the composites showed that the photocatalyst composite contained a typical single and clear anatase phase. The surface properties shown by SEM presented a characterization of the texture on Fe-fullerene/TiO2 composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of O, C and Ti elements. Moreover, peaks of the Fe element were observed in the Fe-TiO2 and Fe-fullerene/TiO2 composites. The degradation of MB solution by UV-light irradiation in the presence of photocatalyst compounds was investigated in complete darkness. The degradation of MB concentration in aqueous solution occurred via three kinds of physical phenomena: quantum efficiency of the fullerene; organo-metallic reaction of the Fe compound; and decomposition of TiO2. The degradation rate of the methylene blue solution increased when using Fe-fullerene/TiO2 compounds.
        4,000원
        13.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The photocatalysts of Fe-ACF/TiO2 compositeswere prepared by the sol-gel method and characterizedby BET, XRD, SEM, and EDX. It showed that the BET surface area was related to adsorption capacity foreach composite. The SEM results showed that ferric compound and titanium dioxide were distributed on thesurfaces of ACF. The XRD results showed that Fe-ACF/TiO2 composite only contained an anatase structurewith a Fe mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in Fe-ACF/TiO2 composites. From the photocataytic degradation effect, TiO2 on activated carbon fiber surface modifiedwith Fe (Fe-ACF/TiO2) could work in the photo-Fenton process. It was revealed that the photo-Fenton reactiongives considerable photocatalytic ability for the decomposition of methylene blue (MB) compared to non-treatedACF/TiO2, and the photo-Fenton reaction was improved by the addition of H2O2. It was proved that thedecomposition of MB under UV (365nm) irradiation in the presence of H2O2 predominantly accelerated theoxidation of Fe2+ to Fe3+ and produced a high concentration of OH. radicals.
        4,000원
        15.
        2009.11 KCI 등재 서비스 종료(열람 제한)
        This study evaluated the applicability of visible-light-driven N- and S-doped titanium dioxide(TiO2) for the control of low-level dimethyl sulfide(DMS) and dimethyl disulfide(DMDS). In addition, a photocatalytic unit(PU)-adsorption hybrid was evaluated in order to examine the removal of DMS and DMDS which exited the PU and a gaseous photocatalytic byproduct(SO2) which was generated during the photocatalytic processes. Fourier-Tranform-Infrared(FTIR) spectrum exhibited different surface characteristics among the three-types of catalysts. For the N- and S-doped TiO2 powders, a shift of the absorbance spectrum towards the visible-light region was observed. The absorption edge for both the N- and S-doped TiO2 was shifted to λ 720 nm. The N-doped TiO2 was superior to the S-doped TiO2 in regards to DMS degradation. Under low input concentration(IC) conditions(0.039 and 0.027 ppm for DMS and DMDS, respectively), the N-doped TiO2 revealed a high DMS removal efficiency(above 95%), but a gradual decreasing removal efficiency under high IC conditions(7.8 and 5.4 ppm for DMS and DMDS, respectively). Although the hybrid system exhibited a superior characteristic to PU alone regarding the removal efficiencies of both DMS and DMDS, this capability decreased during the course of a photocatalytic process under the high IC conditions. The present study identified the generation of sulfate ion on the catalyst surface and sulfur dioxide(maximum concentrations of 0.0019 and 0.0074 ppm for the photocatalytic processes of DMS and DMDS, respectively) in effluent gas of PU. However, this generation of SO2 would be an insignificant addition to indoor air quality levels.