검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 153

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pharmaceutical products occurring in freshwater bodies create numerous problems for the water bodies owing to their bio-toxic nature. In order to remove such pharmaceutical pollutants, a novel Er-doped Bi4O5Br2/ g-C3N5 nanocomposite was prepared by one-pot synthesis and applied for the photocatalytic removal process. The Er ions doped on the surface of Bi4O5Br2/ g-C3N5 nanocomposite exhibited 97% degradation of tetracycline in 60 min under visible light irradiation, which is higher than pure g-C3N5 and Bi4O5Br2 photocatalysts. The improved photocatalytic properties are attributed to the outstanding visible light harvesting capacity and quick charge carrier separation efficiency which greatly reduced the recombination rate in the heterojunctions. Based on radical trapping experiments, the •O2 −, h+ and •OH radicals played a prominent role in the photodegradation reactions under visible light. Finally, the ternary Er-doped Bi4O5Br2/ g-C3N5 nanocomposite is effectively recyclable with quite a stable photocatalytic removal rate. This work enables a new perspective on the rational design of rare-earth-based nanocomposites for various pharmaceutical pollutants treatment processes.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Semiconductor-based photocatalytic carbon dioxide ( CO2) reduction is of great scientific importance in the field of alleviating global warming and energy crisis. Surface amine modification and cocatalyst loading on the catalyst surface could improve CO2 adsorption capacity and photogenerated charge separation. Herein, amine-modified brookite–TiO2 ( NH2–B–TiO2) coupled metal species (Cu, Ag, Ni(OH)2) cocatalysts have been successfully synthesized by chemical reduction method. The photocatalytic CO2 reduction results show that the CH4 production rates of NH2– B–TiO2/Cu, NH2– B–TiO2/Ag, and NH2– B–TiO2/Ni(OH)2 are 3.2, 12.5, and 1.7 times that of NH2– B–TiO2 (0.74 μmmol g− 1 h− 1), respectively. Results show the introduction of metal species on the surface of the catalyst enhances the absorption range of sunlight and the photogenerated carrier separation efficiency, resulting in enhancing the performance of photocatalytic CO2 reduction. This work provides a strategy for designing metal species-loaded amine-modified brookite–TiO2 by surface/interface regulation to improve photocatalytic efficiency.
        4,200원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Considering the characteristics of aldehydes among volatile organic compounds, a combined process was established by linking an absorbent and a photocatalytic reactor. Experiments to find the optimal operating conditions of the combined process showed that as the amount of photocatalyst coating increases, the wavelength of the ultraviolet lamp used becomes shorter, the photodegradation rate becomes faster, and the removal efficiency increases. It was also demonstrated that by controlling the relative humidity during the connection process of the combined process, the re-evaporation phenomenon at the front end (absorption area) of the hybrid process can be improved and the removal efficiency at the back end (photocatalytic reaction area) can be significantly enhanced. This confirmed the need for a combined process that complements the advantages and disadvantages of each process.
        4,000원
        4.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emergence of Mo2C- based catalysts in recent years has been favored as promising contender within diverse class MXenes. In terms of rapid development in the photocatalytic application, these intriguing compounds exhibit excellent photocatalytic performance because of their superior optical properties and peculiar structure characteristics. Unfortunately, a systematic review of Mo2C- based catalysts is lacking. In this review, we abstract the implication of structure—property relationship of emerging Mo2C- based MXenes materials and their applications toward the photocatalytic hydrogen evolution reaction (HER). Furthermore, synthetic pathways to prepare high-quality, low cost Mo2C- based MXenes materials and their outcomes for high HER applications are systematically described. Finally, several insights are provided into the prospects and future challenges for the development of highly reactive Mo2C- based MXenes materials, which present large range opportunities in this promising 2D materials for green and clean energy in environmental fields. This review provides a comprehensive scientific guide to the preparation, modification, and photocatalytic HER of MXenes-based materials.
        4,600원
        5.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a bipolar visible light responsive photocatalytic fuel cell (PFC) was constructed by loading a Z-scheme g-C3N4/ carbon black/BiOBr and a Ti3C2/ MoS2 Schottky heterojunction on the carbon brush to prepare the photoanode and photocathode, respectively. It greatly improved the electron transfer and achieved efficient degradation of organic pollutants such as antibiotics and dyes simultaneously in two chambers of the PFC system. The Z-scheme g-C3N4/carbon black/BiOBr formed by adding highly conductive carbon black to g-C3N4/BiOBr not only effectively separates the photogenerated carriers, but also simultaneously retains the high reduction of the conduction band of g-C3N4 and the high oxidation of the valence band of BiOBr, improving the photocatalytic performance. The exceptional performance of Ti3C2/ MoS2 Schottky heterojunction originated from the superior electrical conductivity of Ti3C2 MXene, which facilitated the separation of photogenerated electron–hole pairs. Meanwhile, the synergistic effect of the two photoelectrodes further improved the photocatalytic performance of the PFC system, with degradation rates of 90.9% and 99.9% for 50 mg L− 1 tetracycline hydrochloride (TCH) and 50 mg L− 1 rhodamine-B (RhB), respectively, within 180 min. In addition, it was found that the PFC also exhibited excellent pollutant degradation rates under dark conditions (79.7%, TCH and 97.9%, RhB). This novel pollutant degradation system is expected to provide a new idea for efficient degradation of multiple pollutant simultaneously even in the dark.
        4,900원
        6.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polymeric carbon nitride (p-C3N4) is a promising platform as a metal-free photo-catalyst for various reactions. The p-C3N4 can be produced by thermal poly-condensation of organic precursors. Their morphological and chemical structures depend on reaction conditions during the poly-condensation. In this study, two p-C3N4 materials are produced by heat treatment of urea under different gaseous conditions with air (urea-derived carbon nitride under air, UCN-A) and N2 (UCN-N), respectively. UCN-A and UCN-N samples are mesoporous materials and show excellent photocatalytic activities for degrading rhodamine B, an organic pollutant, under the irradiation of visible light. The UCN-A shows the better photocatalytic activity than UCN-N. Various characterizations reveal that more porous structures and larger surface areas of UCN-A are reasons for the better photocatalytic performance.
        4,000원
        7.
        2023.05 구독 인증기관·개인회원 무료
        The removal of aqueous pollutants, including dye molecules from wastewater remains one of the pressing problems in the world. Because of chemical stability and conjugated structure, dye molecules cannot be easy decomposed by heat with oxidizing reagents such as H2O2 and light. The most common representative of widespread organic pollutant is methylene blue (MB) with molecular formula C16H18ClN3S, which is important colorant and used in various chemical and biological production industries and causes serious environment problems. Porous materials, including MOFs (metal-organic frameworks) have been applied for efficient MB photocatalytic degradation. However, one of the main barriers to using most MOFs to break down aromatic organics is wide band gap energy, which means that the catalyst can exhibit high photocatalytic performance only under UVlight irradiation. Moreover, most MOFs usually show the poor water stability of frameworks, which tend to dissolve in water with total destruction. In this work we report about two new copper based MOFs with high photocatalytic properties for efficient MB degradation from wastewater under UV-light and natural sunlight. Time, required for 100% MB degradation, equals 7 minutes under UV (source 4 W 254 nm VL-4.LC UV-lamp) and 60 minutes under natural sunlight irradiation in the presence of H2O2. Crystal structure information is provided using single crystal X-ray diffraction data. The composition and comparative characteristics of MOFs are given using powder X-ray diffraction, UV–visible diffuse reflectance spectroscopy, UVvisible spectroscopy and Fourier-transform infrared spectroscopy.
        8.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The conversion of CO2 into solar fuels by photocatalysis is a promising way to deal with the energy crisis and the greenhouse effect. The introduction of oxygen vacancy into semiconductor has been proved to be an effective strategy for enhancing CO2 photoreduction performance. Herein, TiO2- x nanostructures have been prepared by a simple solvothermal method and engineered by the reaction time. With the prolonging of reaction time, the oxygen vacancy signal gradually increases while the band gap becomes narrow for the as-synthesized TiO2- x nanostructures. The results show that the TiO2- x-6 h, TiO2- x-24 h, and TiO2- x-48 h samples have the main product of CH4 (more) and CO (less) for CO2 photoreduction. Among the three oxygen vacancy photocatalysts, the TiO2- x-24 h sample shows the highest CH4 generation rate of 41.8 μmol g− 1 h− 1. On the basis of photo/electrochemical measurements, the TiO2- x-24 h sample exhibits efficient electron–hole separation and charge transfer capabilities, thus allows much more electrons to participate in the reaction and finally promotes the photocatalytic CO2 reduction reaction. It further confirms that the optimization of oxygen vacancy concentration could facilitate the photoinduced charge separation and accordingly improve photocatalytic CO2 conversion.
        4,000원
        9.
        2022.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Interest in the use of semiconductor-based photocatalyst materials for the degradation of organic pollutants in a liquid phase has grown, due to their excellent performance and response to the light source. Herein, we fabricated a NiO-SiCTiO2 ternary structured photocatalyst which had reduced bandgap energy, with strong activation under UV-light irradiation. The synthesized samples were examined using XRD, SEM, EDX, TEM, DRS, EIS techniques and photocurrent measurement. The results confirmed that the two types of metal oxides were well bonded to the SiC fiber surface. The junction of the new photocatalyst exhibited a large number of photoexcited electrons and holes. The holes tended to oxidize the water and form a hydroxyl radical, which promoted the decomposition of methylene blue. The close contact between the 2D SiC fiber and metal oxide semiconductors expanded the scope of absorption wavelength, and enhanced the usability of the ternary photocatalyst for the degradation of methylene blue. Among three synthesized samples, the NiO-SiC-TiO2 showed the best photocatalytic effect, and was considered to have excellent photoelectron transfer due to the synergy effect between the metal oxide and SiC.
        4,000원
        10.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To solve the problem of water pollution, researchers have proposed a photocatalytic degradation technology, in which the key factor is the development of efficient photocatalytic materials. Graphitic carbon nitride (g-C3N4), an n-type semiconductor, has been widely studied due to its suitable band gap (2.7 eV), low cost, easy preparation, non-toxicity, and high photostability. However, the pure-phase g-C3N4 still has defects such as low specific surface area, insufficient visible light absorption, low charge mobility, few active sites for interfacial reaction, and easy recombination of photogenerated electron–hole pairs, which leads to the lower photocatalytic activity of g-C3N4. Aiming at the problems mentioned above, this paper focus on the synthesis of g-C3N4-based composites with high photocatalytic activity via lemon juice induction method. Thiourea and lemon juice were selected as precursors, and carbon quantum dots (CQDs) as electron mediators were introduced anchoring on the surface of g-C3N4 to build g-C3N4/CQDs with compact interface. The results showed that small-sized CQDs are uniformly distributed on the surface of g-C3N4, and the g-C3N4/CQDs composite has a 2D0D structure, which reduces the recombination of photogenerated electron–hole pairs. The photocatalytic degradation efficiency of 4% g-C3N4/CQDs for RhB reaches the highest data of 90.9%, and the photocatalytic degradation rate is 0.016 min− 1, which is about 2.3 times that of g-C3N4. After four cycles of photocatalytic reaction, the photocatalytic degradation efficiency of the material remained at 81.7%. Therefore, the g-C3N4/CQDs synthesized via lemon juice induction has a more stable microstructure, and the charge separation efficiency is greatly improved, which is suitable for practical photocatalytic environmental protection.
        4,300원
        11.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        활성 의약품 성분(APIs)의 존재가 수생 생태계와 인간의 건강에 위험하다는 증거가 있다. 물에 항생물질인 테트 라사이클린과 같은 API가 존재하면 미생물에 항균제 내성(AMR)이 발생해 개인과 사회에 막대한 비용이 발생한다. TiO2 또 는 비스무트 기반 촉매와 같은 촉매가 내장된 막은 유기 유출물을 분해하고 폐수로부터 분리한다. 촉매의 광촉매 활성은 귀 금속 도핑 및 탄소성 물질의 첨가 및 다른 반도체와의 헤테로 접합 형성으로 향상될 수 있다. 광촉매의 회수는 고분자 막에 서 광촉매의 고정화를 통해 가능하다. 이 검토에서는 물 속 항생제의 분해가 논의된다.
        4,000원
        12.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A composite photocatalyst of zinc oxide (ZnO) nanoparticles decorated with different content of reduced graphene oxide (rGO) was prepared via a simple and facile one-step method in this paper. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, and UV–Vis diffuse reflection spectroscopy (UV–Vis DRS) were used to characterize the crystal structure, morphology and optical properties of the rGO–ZnO composite photocatalyst. The photocatalytic properties of the composites were investigated using methyl orange (MO), a typical orange compound, as a test pollutant. The results showed that rGO–ZnO composites displayed significantly enhanced photocatalytic activity in MO degradation than pure ZnO, and the pseudo-first-order kinetic constant on the optimal rGO–ZnO composite was 14 times as great as that on pure ZnO. The enhanced photocatalytic ability of the rGO-ZnO composites was mainly benefited from the high specific surface area and high conductivity of rGO, which facilitated efficient charge separation in the rGO-ZnO nanocomposite.
        4,200원
        13.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        막여과는 흡착, 응집 등의 폐수 처리 방법에 비교해 경제적이며, 높은 효율을 보인다는 장점을 가지고 있다. 하지 만, 막의 표면에 오염물질이 흡착하여 발생하는 막오염 현상으로 인해 막여과의 효율이 크게 줄어들게 된다. 다양한 종류의 막 중에서 세라믹 분리막은 친수성을 띄며, 화학적으로 안정되었기 때문에 오염방지에 효과적이다. 또한, 산화 그래핀 등을 활용한 복합막도 막오염을 예방하는 데 도움이 될 수 있다. 최근에는 막오염을 방지하고 시너지 효과를 얻기 위해 광촉매 분 리막이 해결책으로 제시되었다. 막 분리는 광촉매의 단점인 촉매의 낮은 재사용률을 보완할 수 있으며, 광촉매 반응은 오염을 막을 수 있다.
        4,000원
        14.
        2022.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A porous photocatalyst concrete filter was successfully produced to remove NOx, by mixing TiO2 photocatalyst with lightweight aerated concrete. Ultra Fine Bubbles were used to form continuous pores inside the porous photocatalytic concrete filter, which was mixed via a bubble generation experiment. The optimal mixing condition was determined to be with 4% of the bubble generation agent B. NO removal specimens were prepared for various photocatalytic loading conditions, and the specimen containing 3% P-25 removed NO at a concentration of 1.03 μmol in 1 h. The NO removal rate of the porous photocatalytic concrete filter prepared in this study was 10.99%. This photocatalytic filter performance was more than 9 times the amount of NO removed by a general photocatalytic filter. The porous photocatalyst concrete filter for removing NOx developed in this study can be applied to various construction sites and the air quality can be solved by reducing NOx contributing to the formation of fine particles.
        4,000원
        16.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon quantum dots (CQDs) as a rising class of carbon family have gained widespread attention in view of their multiple properties such as great photoluminescence (PL) properties, facile synthesis route, needing economical and cheap raw material, high physiochemical stability, and simple functionalization. This makes CQDs highly versatile and with potential for different applications. To date, CQDs-enabled photocatalysts are regarded as one of the most efficient technologies to degrade pollutants in water; however, poor activity under visible light and the recombination of photogenerated electron and hole pairs hinder getting an ideal performance that may be applied on a large scale. Conventional techniques have been modified via a new advanced method. In this review, we highlighted the strategies to improve the activity of conventional semiconductor photocatalysis via coupling with CQDs, and strategies to improve the photocatalytic activity such as functionalization, doping, and Z-scheme heterojunctions were discussed in detail. This review also covered the CQDs heterojunction application in pollutant degradation and discussed several examples with high-performance photocatalytic activity.
        5,100원
        17.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        일상적인 화학제품들의 사용량이 증가함에 따라 사용되었던 염료 폐기물 처리 또한 중요한 환경 적인 문제로 대두되었다. 이러한 염료폐기물은 광촉매를 이용하여 분해시킬 수 있는데, 졸-겔 기술을 활용 하면 매우 비용 효율적으로 광촉매를 합성할 수 있다. 졸-겔 기술은 나노스케일의 막 형성에도 상당히 유 용하며 간단하게 다층구조를 형성할 수도 있다. 본 연구에서는 다양한 염료 분해에 효과가 있는 산화아연 (ZnO) 이용하여 다중 회전도포 방법으로 다층구조(3층, 5층)를 가진 ZnO 막을 형성하였다. 성능비교를 위해 단일 회전도포 방법에 의한 단층구조를 가진 ZnO 막을 대조군으로 준비하였다. X선 회절분석기 및 에너지 분산 X선 분광계를 이용하여 ZnO의 구조 및 원소분석을 수행하였고, 주사전자현미경을 통해 나노 선같은 표면형상을 관찰할 수 있었다. 추가적으로 UV-Vis 분광광도계를 활용하여 자외선의 흡수도를 측정 하였다. 5층구조를 가진 ZnO 막이 단층 구조를 가진 ZnO 막에 비해 모의 메틸렌 블루를 49% 더 많이 분해하였다. 결론적으로, 다층구조를 가진 ZnO 는 메틸렌블루 염료를 더욱 효과적으로 분해하는 광촉매로 써 유용하다는 알 수 있었다.
        4,000원
        18.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        성장하는 산업화는 심각한 수질 오염으로 이어진다. 폐수로 배출되는 약품과 섬유산업에서 나오는 유기배출물은 환경과 생명에게 악영향을 미친다. 항균치료에 사용되는 항생제가 폐수에 존재하면 인체에 매우 해로운 약제 내성균의 성장 을 야기하게 된다. 섬유산업에서 사용되는 유기염료 분자의 제조에는 다양한 유기 저분자가 사용된다. 이러한 분자들은 인쇄 및 염색 산업의 폐수 배출물에 존재하여 분해가 잘 이루지지 않는다. 이러한 문제들을 해결하기 위해 광분해성 촉매를 분리 막에 도입하고 폐수를 처리한다. 이 과정을 통해 유기 분자는 광분해되며 동시에 분해된 화합물들은 분리막을 통과하여 분리 된다. 이산화티타늄(TiO2)은 뛰어난 광촉매 역할을 하는 반도체이다. 다른 전이 금속 산화물과 화합물을 만들고 고분자 막에 도입하여 광촉매 능력을 증가시킨다. 본 총설에서는 광촉매성 분리막에 의한 염료 및 약물 분자의 분해에 대해 논의한다.
        4,000원
        19.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To build a highly active photocatalytic system with high efficiency and low cast of TiO2, we report a facile hydrothermal technique to synthesize Ag2Se-nanoparticle-modified TiO2 composites. The physical characteristics of these samples are analyzed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy and BET analysis. The XRD and TEM results show us that TiO2 is coupled with small sized Ag2Se nanoplate, which has an average grain size of about 30 nm in diameter. The agglomeration of Ag2Se nanoparticles is improved by the hydrothermal process, with dispersion improvement of the Ag2Se@TiO2 nanocomposite. Texbrite BA-L is selected as a simulated dye to study the photodegradation behavior of as-prepared samples under visible light radiation. A significant enhancement of about two times the photodegradation rate is observed for the Ag2Se@TiO2 nanocomposite compared with the control sample P25 and as-prepared TiO2. Long-term stability of Ag2Se@TiO2 is observed via ten iterations of recycling experiments under visible light irradiation.
        4,000원
        20.
        2021.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.
        4,000원
        1 2 3 4 5