검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN)-based carbon fibers (CFs) and their composites, CF-reinforced plastics, have garnered significant interest as promising structural materials owing to their excellent properties and lightweight. Therefore, various processing technologies for fabricating these advanced materials using thermal energy have been intensively investigated and developed. In most cases, these thermal energy-based processes (heat treatment) are energy and time consuming due to the inefficient energy transfer from the source to materials. Meanwhile, advanced processing technologies that directly transfer energy to materials, such as radiation processing, have been developed and applied in several industrial sectors since the 1960s. Herein, general aspects of radiation processing and several key parameters for electron-beam (e-beam) processing are introduced, followed by a review of our previous studies pertaining to the preparation of low-cost CFs using specific and textile-grade PAN fibers and improvements in the mechanical and thermal properties of CF-reinforced thermoplastics afforded by e-beam irradiation. Radiation processing using e-beam irradiation is anticipated to be a promising method for fabricating advanced carbon materials and their composites.
        5,100원
        2.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Milled carbon fiber (mCF) was prepared by a ball milling process, and X-ray diffraction (XRD) diffractograms were obtained by a 2θ continuous scanning analysis to study mCF crystallinity as a function of milling time. The raw material for the mCF was polyacrylonitrile- based carbon fiber (T700). As the milling time increased, the mean particle size of the mCF consistently decreased, reaching 1.826 μm at a milling time of 18 h. The XRD analysis showed that, as the milling time increased, the fraction of the crystalline carbon decreased, while the fraction of the amorphous carbon increased. The (002) peak became asymmetric before and after milling as the left side of the peak showed an increasingly gentle slope. For analysis, the asymmetric (002) peak was deconvoluted into two peaks, less-developed crystalline carbon (LDCC) and more-developed crystalline carbon. In both peaks, Lc decreased and d002 increased, but no significant change was observed after 6 h of milling time. In addition, the fraction of LDCC increased. As the milling continued, the mCF became more amorphous, possibly due to damage to the crystal lattices by the milling.
        4,000원
        3.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN)-based carbon fibers have high specific strength, elastic modulus, thermal resistance, and thermal conductivity. Due to these properties, they have been increasingly widely used in various spheres including leisure, aviation, aerospace, military, and energy applications. However, if exposed to air at high temperatures, they are oxidized, thus weakening the properties of carbon fibers and carbon composite materials. As such, it is important to understand the oxidation reactions of carbon fibers, which are often used as a reinforcement for composite materials. PAN-based carbon fibers T300 and T700 were isothermally oxidized in air, and microstructural changes caused by oxidation reactions were examined. The results showed a decrease in the rate of oxidation with increasing burn-off for both T300 and T700 fibers. The rate of oxidation of T300 fibers was two times faster than that of T700 fibers. The diameter of T700 fibers decreased linearly with increasing burn-off. The diameter of T300 also decreased with increasing burn-off but at slower rates over time. Cross-sectional observations after oxidation reactions revealed hollow cores in the longitudinal direction for both T300 and T700 fibers. The formation of hollow cores after oxidation can be traced to differences in the fabrication process such as the starting material and final heat treatment temperature.
        4,000원