The waste secondary battery contains a significant amount of valuable metals, making its recycling highly desirable. However, conventional chemical methods for recycling are environmentally unfriendly and cost-ineffective. Rather than the chemical method, this paper deals with a mechanical method for recovering electrode materials from waste secondary batteries by blowing pressurized air onto the interface area between the electrode and the separator. Especially, in this study, the effective blowing angle were searched by simulating the separation of the electrode material from the separator through 1-way fluid structure interaction analysis based on the Cohesive Zone Modeling technique.
2023년 3월, EU는 안전하고 다양하며 저렴하고 지속 가능한 주요 원 자재 공급에 접근하는 포괄적인 조치인 핵심 원자재법(CRMA:Critical Raw Materials Act)을 채택하였다. CRMA의 핵심은 총 4가지로 구분 할 수 있다. EU전체 연간 소비량 대비 최소 10%이상을 역내에서 채굴 하고 핵심원자재 역내 가공량을 최대 40%이상으로 하며 핵심원자재 역 내 재활용 비율을 최소 15%까지 끌어올리기로 목표한 것이다. 또한 모 든 가공 단계에서 특정 국가에 대한 수입량을 EU연간 소비량의 65%를 제한 하였다. CRMA의 출현에 따라 중동부유럽 내에서 선전하고 있는 우리 자동차 기업과 배터리 생산기업에도 변화가 있을 것이며 핵심원자 재 법에 따른 대응방안을 강구해야 할 필요가 있다. 따라서 본 논문에서 는 중동부유럽 2차전지 기업 현황을 살펴보고 EU 핵심원자재법 출현에 따른 대응방안을 제시해 보고자 한다.
To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/ discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).
This study deals with improvement plans and application results to improve the safety of secondary batteries and chargers applied to Tactical Multi-band Multi-role Radio(TMMR), a new military communication equipment. Due to the nature of the portable weapon system, the terminal structure and manufacturing process of the battery and charger were improved to strengthen resistance to vibration and shock generated during movement, and the battery structure was partially changed to secure resistance to mechanical shock generated when the charger was coupled. In addition, retrospective application was completed for all secondary batteries and chargers previously delivered for TMMR, helping the Korean military to operate next-generation radios in a safer environment.
해수이차전지는 해수를 양극으로 사용하는 차세대 이차전지이다, 해양 자원을 사용하여 가격 경쟁력과 높은 친환경성, 그리고 해양 애플리케이션에 적합한 구조를 가진다. 이러한 장점을 기반으로 지속적 연구개발을 통해 자연 해수 노출을 가정한 파우치 타입 및 각형 타입이 개발되어 왔다. 그러나 이차전지는 전기적 특성상 사용 환경에 따라 용량 및 내부 임피던스가 달라진다. 이러한 특성은 전지 의 수명 예측에 활용될 뿐만 아니라 활용하고자 하는 상황에 맞는 용량과 출력에 직접적인 영향을 미친다. 따라서 본 논문에서는 해수이 차전지의 사용 환경에 따른 용량 측정과 SoC-OCV 측정 방법을 통한 내부 저항을 분석하고자 한다.
Lithium ion batteries have been extensively used in portable electronic devices due to their high energy density and long cycle life. Recently, lithium ion batteries are required to run conditions that drive up to 1.5C, 2.0C, or higher in order to produce quick charge secondary cells, but the life degradation and safety concerns and rising. In other words, as the number of repetitions of the charge and discharge increases, the binding between the active materials and the ionic conductors becomes loose, and the contact resistance between the particles increases, and due to the increased resistance of the electrode, the battery performance is degraded, and during the life cycle degradation of cathode and anode materials occurs, and it is directly linked to life and safety issues. This study aims to improve the quick charge performance by improving the lithium ion material.
리튬이온 이차전지는 리튬이온이 이동하면서 전기화학적 충방전사이클을 완성하는 에너지변환장치를 의미한다. 리튬이온 이차전지는 높은 에너지밀도와 낮은 자가방전률, 상대적으로 긴 수명주기 등 다양한 장점을 갖는다. 최근 전기차 수 요증가는 고용량 리튬이온 이차전지 개발을 촉진하고 있으나 음극에서의 dendrite 형성으로 인한 전기적 단락 현상과 전지 폭 발 문제와 같은 심각한 안전문제를 야기한다. 또한, 리튬이온 이차전지 구동시 상승된 온도에서 폴리올레핀계열(예 : 폴리에 틸렌과 폴리프로필렌) 격리막의 열수축 문제가 발생한다. 이와 같이 낮은 열 안정성은 리튬이온 이차전지의 성능과 수명의 감소로 이어진다. 본 연구에서는 폴리올레핀계열 함침격리막 제조를 위한 중요한 소재로서 술폰화 폴리아릴렌에테르술폰 랜 덤 공중합체를 사용하였으며, 제조된 격리막을 이용하여 dendrite 형성과 관련된 금속이온 흡착 능력과 리튬이온전도성, 열적 내구성이 평가되었다.
The electrochemical properties of cells assembled with the LiNiO2 (LNO) recycled from cathode materialsof waste lithium secondary batteries (Li[Ni,Co,Mn]O2), were evaluated in this study. The leaching, neutralization andsolvent extraction process were applied to produce high-purity NiSO4 solution from waste lithium secondary batteries.High-purity NiO powder was then fabricated by the heat-treatment and mixing of the NiSO4 solution and H2C2O4.Finally, LiNiO2 as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixingof the NiO and Li2CO3 powders. We assembled the cells using the LiNiO2 powders and evaluated the electrochemicalproperties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary bat-tery using the processes applied in this work.
Cathode materials and their precursors are prepared with transition metal solutions recycled from the thewaste lithium-ion batteries containing NCM (nickel-cobalt-manganese) cathodes by a H2 and C-reduction process. Therecycled transition metal sulfate solutions are used in a co-precipitation process in a CSTR reactor to obtain the tran-sition metal hydroxide. The NCM cathode materials (Ni:Mn:Co=5:3:2) are prepared from the transition metal hydroxideby calcining with lithium carbonate. X-ray diffraction and scanning electron microscopy analyses show that the cathodematerial has a layered structure and particle size of about 10 µm. The cathode materials also exhibited a capacity ofabout 160 mAh/g with a retention rate of 93~96% after 100 cycles.
Two different types of graphite, such as flake graphite (FG) and spherical graphite (SG), were used as anode materials for a lithium-ion secondary battery in order to investigate their electrochemical performance. The FG particles were prepared by pulverizing natural graphite with a planetary mill. The SG particles were treated by immersing them in acid solutions or mixing them with various carbon additives. With a longer milling time, the particle size of the FG decreased. Since smaller particles allow more exposure of the edge planes toward the electrolyte, it could be possible for the FG anodes with longer milling time to deliver high reversible capacity; however, their initial efficiency was found to have decreased. The initial efficiency of SG anodes with acid treatments was about 90%, showing an over 20% higher value than that of FG anodes. With acid treatment, the discharge rate capability and the initial efficiency improved slightly. The electrochemical properties of the SG anodes improved slightly with carbon additives such as acetylene black (AB), Super P, Ketjen black, and carbon nanotubes. Furthermore, the cyclability was much improved due to the effect of the conductive bridge made by carbon additives such as AB and Super P.
Expanded graphites were used as anode materials of high power Li-ion secondary battery. The expanded graphite was prepared by mixing the graphite with HClO4 as a intercalation agents and KMnO4 as a oxidizing agents. The physical and electrochemical properties of prepared expanded graphites through the variation of process variables such as contents of intercalation agent and oxidizing agent, and heat treatment temperature were analyzed for determination of optimal conditions as the anode of high power Li-ion secondary battery. After examing the electrochemical properties of expanded graphites at the different preparing conditions, the optimal conditions of expanded graphite were selected as 8 wt.% of oxidizing agent, 400 g of intercalation agent for 20 g of natural graphite, and heat treatment at 1000℃. The sample showed the improved charge/discharge characteristics such as 432 mAh/g of initial reversible capacity, 88% of discharge rate capability at 10 C-rate, and 24 mAh/g of charge capacity at 10 C-rate. However, the expanded graphite had the problems of potential plateaus like natural graphite and lower initial efficiency than the natural graphite.
One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, TiCl4·YCl3 solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical TiO2 precursor. Then, the Li4Ti5O12 was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical TiO2 precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which Li4Ti5O12 spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at 50˚C for 30 minutes and at 850˚C for 6 hours heat treatment time were optimized. Li4Ti5O12 was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.
Petroleum pitch and coke with wet mixture method or with dry mixture method were investigated to develop the composite anodic carbon material of high power lithium ion battery. Cokes coated with pitch were obtained by the heat treatment of mixture of cokes and pitch with different weight ratios at 800~1200℃. The charge and discharge characteristic of the consequent composite anodic carbon material assembled in batteries was tested. Cokes with wet mixture method have a smooth surface and their capacity changed little with changing temperature and content as compared to the cokes with dry mixture method. Although the reversible capacities showed different values by the anode manufacturing method, the composite anode with the mixture of 20 wt% of petroleum pitch and 80 wt% of coke showed the higher power capability and initial efficiency than the pitch based anode. However, the reversible capacity of the composite anode showed the reduced value as compared with the pitch based anode.
본 연구에서는 Polyethylene (PE, Asahi) 이차전지용 막의 표면불소화를 통해 기계적 강도 및 열적 안정성과 고출력에서의 안정성을 높이기 위한 연구를 실시하였다. 전자주사현미경(scanning electron microscope, SEM), 접촉각(contact angle)을 통하여 불소가스 노출시간에 따른 막의 표면과 구조의 변화를 관찰하고, 인장강도와 표면 친수성 실험을 통하여 막의 기계적 물성을 확인하였다. 제조된 막의 전기화학적 특성을 확인하기 위하여 충/방전 실험, 수명특성. 고율방전시험을 실시하여 고출력에서 온도에 대한 안정성이 향상되었음을 확인하였다.
Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at 1000℃ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.
Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in μm) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after 100th cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.
The properties and electrochemical characteristics of anode material using pitch-coated graphite residue compounds by heat-treatment at 600℃ for 1 hour were investigated. The distance of layers of pitch-coated graphite residual compounds was 3.3539 a, which was as same as that of graphite. Its electrochemical and charge discharge characteristics were tested according to different four types of carbon material, natural graphite, pitch-coated graphite, amorphous graphite and pitch-coated graphite residual compounds, respectively. So it was shown the best charge-discharge characteristics in all of the samples. For the electrochemical and charge-discharge characteristics, although pitch-coated graphite residual compounds had different carbon contents 70% and 80%, these two samples were shown good electrochemical and charge-discharge characteristics.
The natural graphite particles A and heat-treated graphite particles B at 1800 ℃ after pitch-coating were used as the anode base materials for lithium ion secondary battery. In order to improve the performance of anode materials, the base anode materials were treated with various acids. With the acid treatments of 62% HNO3 and 95% H2SO4 aqueous solution, the specific surface area and electrical conductivity of base anode materials were increased, and the initial charge-discharge capacity and cycle performance were improved due to the elimination of structural defects.