검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The influence of MgO addition on the densification and microstructure of alumina (Al2O3) was studied. Compacted alumina specimens were manufactured using ball-milling and one-directional pressing followed by sintering at temperatures below 1700oC. Relative density, shrinkage, hardness, and microstructure were investigated using analytical tools such as FE-SEM, EDS, and XRD. When the MgO was added up to 5.0 wt% and sintered at 1500oC and 1600oC, the relative density exhibited an average value of 97% or more at both temperatures. The maximum density of 99.2% was with the addition of 0.5 wt% MgO at 1500oC. Meanwhile, the specimens showed significantly lower density values when sintered at 1400oC than at 1500oC and 1600oC owing to the relatively low sintering temperature. The hardness and shrinkage data also showed a similar trend in the change in density, implying that the addition of approximately 0.5 wt% MgO can promote the densification of Al2O3. Studying the microstructure confirmed the uniformity of the sintered alumina. These results can be used as basic compositional data for the development of MgOcontaining alumina as high-dielectric insulators.
        4,000원
        2.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SiAlON ceramics are used as ceramic cutting tools for heat-resistant super alloys (HRSAs) due to their excellent fracture toughness and thermal properties. They are manufactured from nitride and oxide raw materials. Mixtures of nitrides and oxides are densified via liquid phase sintering by using gas pressure sintering. Rare earth oxides, when used as sintering additives, affect the color and mechanical properties of SiAlON. Moreover, these sintering additives influence the cutting performance. In this study, we have prepared Ybm/3Si12-(m+n)Alm+nOnN16-n (m = 0.5; n = 0.5, 1.0) ceramics and manufactured SiAlON ceramics, which resulted in different colors. In addition, the characteristics of the sintered SiAlON ceramics such as fracture toughness and microstructure have been investigated and results of the cutting test have been analyzed.
        4,000원
        3.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, MgO–CaO–Al2O3–SiO2 (MCAS) nanocomposite glass powder having a mean particle size of 50 nm and a specific surface area of 40 m2/g is used as a sintering additive for AlN ceramics. Densification behaviors and thermal properties of AlN with 5 wt% MCAS nano-glass additive are investigated. Dilatometric analysis and isothermal sintering of AlN-5wt% MCAS compact demonstrates that the shrinkage of the AlN specimen increases significantly above 1,300oC via liquid phase sintering of MCAS additive, and complete densification could be achieved after sintering at 1,600oC, which is a reduction in sintering temperature by 200oC compared to conventional AlN-Y2O3 systems. The MCAS glass phase is satisfactorily distributed between AlN particles after sintering at 1,600oC, existing as an amorphous secondary phase. The AlN specimen attained a thermal conductivity of 82.6 W/m·K at 1,600oC.
        4,000원
        4.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effects of clay, aluminum hydroxide, and carbon powder on the sintering of a Si/SiC mixture from photovoltaic silicon-wafer production were investigated. Sintering temperature was fixed at 1,350˚C and the sintered bodies were characterized by SEM and XRD to analyze the microstructure and to measure the apparent porosity, absorptivity, and apparent density. The XRD peak intensity of SiC in the sintered body was increased by adding 5% carbon to the Si/SiC mixture. From this result, it is confirmed that Si in the Si/SiC mixture had reacted with the added carbon. Addition of aluminum hydroxide decreased the cristobalite phase and increased the stable mullite phase. The measurement of the physical properties indicates that adding carbon to the Si/SiC mixture enables us to obtain a dense sintered body that has high apparent density and low absorptivity. The sintered body produced from the Si/SiC mixture with aluminum hydroxide and carbon powder as sintering additives can be applied to diesel particulate filters or to heat storage materials, etc., since it possesses high thermal conductivity, and anticorrosion and antioxidation properties.
        4,000원