검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 149

        21.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates the effects of isothermal holding temperature and time on the microstructure, hardness and Charpy impact properties of medium-carbon bainitic steel specimens. Medium-carbon steel specimens with different bainitic microstructures are fabricated by varying the isothermal conditions and their microstructures are characterized using OM, SEM and EBSD analysis. Hardness and Charpy impact tests are also performed to examine the correlation of microstructure and mechanical properties. The microstructural analysis results reveal that granular bainite, bainitic ferrite, lath martensite and retained austenite form differently in the specimens. The volume fraction of granular bainite and bainitic ferrite increases as the isothermal holding temperature increases, which decreases the hardness of specimens isothermally heat-treated at 300 ℃ or higher. The specimens isothermally heat-treated at 250 ℃ exhibit the highest hardness due to the formation of lath martensite, irrespective of isothermal holding time. The Charpy impact test results indicate that increasing isothermal holding time improves the impact toughness because of the increase in volume fraction of granular bainite and bainitic ferrite, which have a relatively soft microstructure compared to lath martensite for specimens isothermally heat-treated at 250 ℃ and 300 ℃.
        4,000원
        22.
        2018.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper presents a study of the microstructure and mechanical properties of commercial high-hardness armor (HHA) steels tempered at different temperatures. Although the as-received specimens of all the steels exhibit a tempered martensite structure with lath type morphology, the A steel, which has the smallest carbon content, had the lowest hardness due to reduced solid solution hardening and larger lath thickness, irrespective of tempering conditions. As the tempering temperature increases, the hardness of the steels steadily decreases because dislocation density decreases and the lath thickness of martensite increases due to recovery and over-aging effects. When the variations in hardness plotted as a function of tempering temperature are compared with the hardness of the as-received specimens, it seems that the B steel, which has the highest yield and tensile strengths, is fabricated by quenching, while the other steels are fabricated by quenching and tempering. On the other hand, the impact properties of the steels are affected by specimen orientation and test temperature as well as microstructure. Based on these results, the effect of tempering on the microstructure and mechanical properties of commercial high-hardness armor steels is discussed.
        4,000원
        23.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Multiple galvanized steel and aluminium alloy sheets were joined by self-piercing rivet(SPR) and hybrid joining(SPR + adhesive bonding). In this study, tensile-shear load and fatigue properties of multi-layer SPR and hybrid joints were investigated. Moreover, tensile-shear deformation behavior of the joints under different specimen configurations was investigated. Depending on the specimen configurations either top sheet tearing failure mode or rivet tail pull-out failure mode was observed during the tensile-shear tests. The top sheet tearing failure mode resulted in low maximum tensile-shear load, but it led to larger displacement value as compared to that in the tail pull-out failure mode. Maximum tensile-shear load of hybrid joints was about four times higher than that of SPR joints. Also, fatigue limit of hybrid joints was about two times higher than that of SPR joints.
        4,000원
        24.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at −196 oC due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at −196 oC showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.
        4,000원
        25.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of α-ferrite and cementite(Fe3C) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of lowcarbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.
        4,000원
        27.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This present study deals with the microstructure and tensile properties of 600 MPa-grade high strength and seismic resistant reinforcing steels. The high strength reinforcing steel (SD 600) was fabricated by Tempcore processing, while the seismic resistant reinforcing steel (SD 600S) was air-cooled after hot-rolling treatment. The microstructure analysis results showed that the SD 600 steel specimen consisted of a tempered martensite and ferrite-pearlite structure after Tempcore processing, while the SD 600S steel specimen had a fully ferrite-pearlite structure. The room-temperature tensile test results indicate that, because of the enhanced solid solution and precipitation strengthening caused by relatively higher contents of C, Mn, Si and V in the SD 600S steel specimen, this specimen, with fully ferrite-pearlite structure, had yield and tensile strengths higher than those of the SD 600 specimen. On the other hand, the hardness of the SD 600 and SD 600S steel specimens changed in different ways according to location, dependent on the microstructure, ferrite grain size, and volume fraction.
        4,000원
        28.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, we use multiwall carbon nanotubes (MWCNT) as the starting material for the fabrication of sintered carbon steel. A comparison is made with conventionally sintered carbon steel, where graphite is used as the starting material. Milling is performed using a horizontal mill sintered in a vacuum furnace. We analyze the grain size, number of pores, X-ray diffraction patterns, and microstructure. Changes in the physical properties are determined by using the Archimedes method and Vickers hardness measurements. The result shows that the use of MWCNTs instead of graphite significantly reduces the size and volume of the pores as well as the grain size after sintering. The addition of Y2O3.to the Fe-MWCNT samples further inhibits the growth of grains.
        3,000원
        29.
        2017.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, two Fe-30Mn-0.2C-(1.5Al) high-manganese steels with different surface conditions were hydrogencharged under high temperature and pressure; then, tensile testing was performed at room temperature in air. The yield strength of the 30Mn-0.2C specimen increased with decreasing surface roughness(achieved via polishing), but that of the 30Mn-0.2C- 1.5Al specimen was hardly affected by the surface conditions. On the other hand, the tendency of hydrogen embrittlement of the two high-manganese steels was not sensitive to hydrogen charging or surface conditions from the standpoints of elongation and fracture behavior. Based on the EBSD analysis results, the small decrease in elongation of the charged specimens for the Fe-30Mn-0.2C-(1.5Al) high-manganese steels was attributed to the enhanced dislocation pile-up around grain boundaries, caused by hydrogen
        4,000원
        30.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the oxidation properties of Fe-14Cr ferritic oxide-dispersion-strengthened (ODS) steel at various high temperatures (900, 1000, and 1100°C for 24 h). The initial microstructure shows that no clear structural change occurs even under high-temperature heat treatment, and the average measured grain size is 0.4 and 1.1 μm for the as-fabricated and heat-treated specimens, respectively. Y–Ti–O nanoclusters 10–50 nm in size are observed. High-temperature oxidation results show that the weight increases by 0.27 and 0.29 mg/cm2 for the asfabricated and heat-treated (900°C) specimens, and by 0.47 and 0.50 mg/cm2 for the as-fabricated and heat-treated (1000°C) specimens, respectively. Further, after 24 h oxidation tests, the weight increases by 56.50 and 100.60 mg/cm2 for the as-fabricated and heat-treated (1100°C) specimens, respectively; the latter increase is approximately 100 times higher than that at 1000°C. Observation of the surface after the oxidation test shows that Cr2O3 is the main oxide on a specimen tested at 1000°C, whereas Fe2O3 and Fe3O4 phases also form on a specimen tested at 1100°C, where the weight increases rapidly. The high-temperature oxidation behavior of Fe-14Cr ODS steel is confirmed to be dominated by changes in the Cr2O3 layer and generation of Fe-based oxides through evaporation.
        4,000원
        31.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This present study deals with the effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure. Six kinds of lowcarbon steel specimens were fabricated by adding micro-alloying elements of Nb, Ti and V, and by varying isothermal transformation temperature. Ferrite grain size of the specimens containing mirco-alloying elements was smaller than that of the Base specimens because of pinning effect by the precipitates of carbonitrides at austenite grain boundaries. The pearlite interlamellar spacing and cementite thickness decreased with decreasing transformation temperature, while the pearlite volume fraction was hardly affected by micro-alloying elements and transformation temperature. The room-temperature tensile test results showed that the yield strength increased mostly with decreasing ferrite grain size and elongation was slightly improved as the ferrite grain size and pearlite interlamellar spacing decreased. All the specimens exhibited a discontinuous yielding behavior and the yield point elongation of the Nb4 and TiNbV specimens containing micro-alloying elements was larger than that of the Base specimens, presumably due to repetitive pinning and release of dislocation by the fine precipitates of carbonitrides.
        4,000원
        32.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study dealt with truck crash performance evaluation of new guardrails made of PosMac steels considering the ground bearing capacity effect. Subsequent crash simulation results for SB2 and SB4 grades present that the developed model performs much better in containing and redirecting the impacting vehicle in a stable manner. In this paper, the existing finite element crash analysis of guardrails using the LS-DYNA program is further extended to study the nonlinear dynamic response of the guardrail structures with new type poles supported by external stiffeners. The numerical results for various parameters are verified by comparing different grades with displacements occurred in the barrier from the crash simulation.
        4,000원
        33.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, six kinds of low-carbon steel specimens with different ferrite-pearlite microstructures were fabricated by varying the Nb content and the transformation temperature. The microstructural factors of ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured based on optical and scanning electron micrographs; then, Charpy impact tests were conducted in order to investigate the correlation of the microstructural factors with the impact toughness and the ductile-brittle transition temperature (DBTT). The microstructural analysis results showed that the Nb4 specimens had ferrite grain size smaller than that of the Nb0 specimens due to the pinning effect resulting from the formation of carbonitrides. The pearlite interlamellar spacing and the cementite thickness also decreased as the transformation temperature decreased. The Charpy impact test results indicated that the impact-absorbed energy increased and the ductile-brittle transition temperature decreased with addition of Nb content and decreasing transformation temperature, although all specimens showed ductile-brittle transition behaviour.
        4,000원
        34.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, recrystallization behaviors in the two-phase (α+γ) region of micro-alloyed steels such as Base, Nb, TiNbV and CAlN were investigated in terms of flow stress, microstructure and associated grain boundary characteristics. The flow stress of all specimens reached peak stress and gradually decreased, which means that recrystallization or recovery of proeutectoid deformed ferrite and recovery or transformation to ferrite of deformed austenite occurred by thermal activation. The precipitation of carbide or nitride via the addition of micro-alloying elements, because it reduced prior austenite grain size upon austenitization, promoted transformation of austenite to ferrite and increased flow stress. The strain-induced precipitation under deformation in the two-phase region, on the other hand, increased the flow stress when the micro-alloying elements were dissolved during austenitization. The recrystallization of the Nb specimen was more effectively retarded than that of the TiNbV specimen during deformation in the two-phase region.
        4,000원
        35.
        2016.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study deals with the effects of micro-alloying elements such as Ni, V, and Ti on the recrystallization behavior of carbon steels at different strain rates. Eight steel specimens were fabricated by varying the chemical composition and reheating temperature; then, a high-temperature compressive deformation test was conducted in order to investigate the relationship of the microstructure and the recrystallization behavior. The specimens containing micro-alloying elements had smaller prior austenite grain sizes than those of the other specimens, presumably due to the pinning effect of the formation of carbonitrides and AlN precipitates at the austenite grain boundaries. The high-temperature compressive deformation test results indicate that dynamic recrystallization behavior was suppressed in the specimens with micro-alloying elements, particularly at increased strain rate, because of the pinning effect of precipitates, grain boundary dragging and lattice misfit effects of solute atoms, although the strength increased with increasing strain rate.
        4,000원
        36.
        2016.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The hydrogen embrittlement of two austenitic high-manganese steels was investigated using tensile testing under high-pressure gaseous hydrogen. The test results were compared with those of different kinds of austenitic alloys containing Ni, Mn, and N in terms of stress and ductility. It was found that the ultimate tensile stress and ductility were more remarkably decreased under high-pressure gaseous hydrogen than under high-pressure gaseous argon, unlike the yield stress. In the specimens tested under high-pressure gaseous hydrogen, transgranular fractures were usually observed together with intergranular cracking near the fracture surface, whereas in those samples tested under high-pressure gaseous argon, ductile fractures mostly occurred. The austenitic high-manganese steels showed a relatively lower resistance to hydrogen embrittlement than did those with larger amounts of Ni because the formation of deformation twins or microbands in austenitic highmanganese steels probably promoted planar slip, which is associated with localized deformation due to gaseous hydrogen.
        4,000원
        37.
        2016.04 구독 인증기관·개인회원 무료
        This study dealt with passenger safety assessment of roadside barrier structures using high anti-corrosion steels, which are called hot-dip zinc-aluminium-magnesium alloy-coated steels. We performed a simulation with high anti-corrosion barriers capable of absorbing impacts and calculated the breakage stress to assess passenger safety. Passenger safety was assessed by calculating the THIV (Theoretical Head Impact Velocity) and PHD (Post-Impact Head Deceleration). This process compares normal steel materials and high anti-corrosion steel materials. The simulation test results for the roadside barriers built with high strength anti-corrosion steels with reduced sectional thickness meet the safety evaluation criteria, hence the proposed roadside barrier made by high strength and high anti-corrosion hot-dip zinc-aluminium-magnesium alloy-coated steel will be a good solution to serve passenger safety as well as save maintenance cost and better structural performance.
        38.
        2016.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study was carried out to investigate the effect of W substitution on the precipitation behavior of χ and σ phases in super duplex stainless steel. The χ phase was precipitated at the interface of ferrite / austenite phases and inside the ferrite phase at the initial stage of aging. With an increase in the aging time, the volume fraction of the χ phase increased, and then decreased with the transformation from the χ phase to the σ phase. The σ phase was precipitated later than the χ phase, and the volume fraction of x phase increased with the increase in the aging time. The ferrite phase was decomposed into the new austenite (γ2) and σ phases by aging treatment. The decomposition of the ferrite phase into the γ2 and σ phases was retarded by W substitution for Mo. The volume fraction of the χ phase increased and that of the σ phase decreased due to W substitution. The χ and σ phases were intermetallic compounds, which had lower nickel concentration, and higher chromium, molybdenum, and tungsten concentrations. The χ phase has higher molybdenum and tungsten concentrations than those of the σ phase. The amounts of chromium and nickel in the χ and σ phases did not change, but these phases have higher concentrations of molybdenum and tungsten due to W substitution for Mo.
        4,000원
        39.
        2015.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferritepearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and lowtemperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.
        4,000원
        40.
        2015.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of M23(C,B)6 along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of 3 oC/s, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.
        4,000원
        1 2 3 4 5