검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 26

        1.
        2023.11 구독 인증기관·개인회원 무료
        The thermal evaluations for the conceptual design of the deep geological repository considering the improved modeling of the spent fuel decay heat were conducted using COMSOL Multiphysics computational program. The maximum temperature at the surface of a disposal canister for the technical design requirement should not exceed 100°C. However, the peak temperature at the canister surface should not exceed 95°C considering the safety margin of 5°C due to several uncertainties. All thermal evaluations were based on the time-dependent simulation from the emplacement time of the canister to 100,000 years later. In particular, the heat source condition was set to the decay heat rate and axial decay heat profile of the PLUS7 fuel with 4.0wt% U-235 and 45 GWD/MTU. The thermal properties of the granitic rock in South Korea were applied to the host rock region. For the reference design case, the cooling time of the SNF was set to 40 years, the distance between the deposition holes 8 meters and that between the deposition tunnels 30 meters. However, the peak temperature at the canister surface at 10 years was 95.979°C greater than 95°C. This design did not meet the thermal safety requirement and needed to be modified. For the first modified case, when the distance between the deposition tunnels was set to 30 meters, three cooling time cases of 40, 50 and 60 years and five distances of 6, 7, 8, 9 and 10 meters between the deposition holes were considered. The design with the distances of 9 and 10 meters between the deposition holes for the cooling time of 40 years and all five distances for 50 and 60 years were less than 95°C. For the second modified case, when the distance between the deposition holes was set to 8 meters, three cooling time cases of 40, 50 and 60 years and five distances of 20, 25, 30, 35 and 40 meters between the deposition tunnels were considered. The design with the distances of 35 and 40 meters between the deposition tunnels for the cooling time of 40 years, the distances of 25, 30, 35 and 40 meters for 50 years and all five distances for 60 years were less than 95°C. As a result, the peak temperature at the canister surface decreased as the cooling time and the distance between the deposition holes and the tunnels increased.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The design and fabrication of suitable waste forms with high thermal and structural stability are essential for the safe management and disposal of radioactive wastes. In particular, the thermal properties and temperature distribution of waste form containing high heat-generating nuclides such as Cs and Sr can be used to evaluate its thermal stability, but also provide useful information for the design of canisters, storage systems, and repositories. In this study, a new program code-based thermal analysis framework has been developed to facilitate the characterization, design, and optimization of the waste form. Matlab was used as a software development platform because it provides powerful mathematical computation and visualization components such as the partial differential equation (PDE) toolbox for solving heat transfer problems using finite element method, the App Designer for graphical user interface (GUI), and the MATLAB Compiler for sharing MATLAB programs as standalone applications and web applications. The thermal analysis results such as temperature distribution, heat flux, maximum/ minimum temperature, and centerline/surface temperature profile are visualized with graphs and tables. To evaluate the effectiveness of the developed program, several design and optimization studies were carried out for the SrTiO3 waste form, selected as a stable form of strontium nuclide.
        4.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, to develop and verify the Jeju-type groundwater thermal system design program, the energy consumption and system performance derived by input into the design program based on the load calculated on the demonstration site and the groundwater temperature were compared and analyzed with the actual measured values. The theoretical values ​​of energy consumption and heating and cooling COP ​​obtained through the Jeju-type groundwater thermal system design program were 11.24kW, 5.28 for heating, 13.31kW, 3.94 for cooling respectively. The measured values ​​of energy consumption and COP of the Jeju-type groundwater thermal system were 3967.2kW and 4.5, respectively. The error between the theoretical value and the measured value obtained through the design program is 0% and 2.39%, respectively. The errors that occur in the predicted values ​​and the actual values ​​are due to variables that are ignored in the system assumptions. If users consider errors and use it when designing groundwater thermal systems, they can estimate the cost of required drilling works, heat exchangers, and heat pumps and analyze economic feasibility.
        4,000원
        5.
        2022.05 구독 인증기관·개인회원 무료
        Currently, the HI-STAR 63 transport cask, developed to transport CANDU spent nuclear fuel from the wet storage pool to the dry storage facility which is called the MACSTOR/KN-400, has a transport capacity of 120 bundles, which is unfavorable when considering transportation costs and other related aspects. According to the ‘Basic Plan for High-Level Radioactive Waste Management (draft)’, the total amount of CANDU spent nuclear fuel is expected to be approximately 660,000 bundles. To safely and efficiently transport this amount to interim storage facilities, it is essential to develop a large-capacity transport cask. Therefore, we have been developing a large-capacity PHWR spent nuclear fuel transport cask, called the KTC-360 transport cask. According to the transport-cask related regulations, the KTC-360 transport cask was classified as a Type B package, and such packages need to maintain integrity under the normal transport and accident conditions described in these regulations. To prove the thermal integrity of this cask under the normal transport and accident conditions, high-temperature and fire tests were performed using a one-third slice model of an actual KTC-360 cask. The results revealed that the surface temperature of the cask was 62°C, indicating that such casks need to be transported exclusively. The highest temperature of the CANDU spent nuclear fuel was predicted to be lower than the melting temperature of Zircaloy-4, which was the sheath material used. Therefore, if normal operating conditions are applied, the thermal integrity of a KTC- 360 cask could be maintained under normal transport conditions. The fire test revealed that the maximum temperatures of the structural materials, stainless steel, and carbon steel, were 446°C lower than the permitted maximum temperatures, proving the thermal integrity of the cask under fireaccident conditions.
        6.
        2022.05 구독 인증기관·개인회원 무료
        The temperature of the spent fuel cladding is the basis for the evaluation of integrity. It is almost impossible to directly measure the temperature of spent nuclear fuel. Because spent nuclear fuel is dangerous. We are preparing a test to measure the cladding temperature with an equivalent fuel assembly by simulating the characteristics of spent nuclear fuel. PLUS7 was selected as the test target in consideration of the amount of generation, thermal water retention, residual moisture content, and manufacturability of domestic spent nuclear fuel. The nuclear fuel assembly is planned to be manufactured in two main ways. Except for the cladding tube that simulates decay heat, the structure will be manufactured by KEPCO Nuclear Fuel, and fuel rods and canisters will be manufactured by SUKEGAWA Electric in Japan. The same nuclear fuel assemblies as commercial skeleton will be applied. The temperature of the fuel cladding will be measured by attaching a thermocouple directly to the surface of the cladding tube. The canister is composed of a basket, a basket supporter, a heater and drain tube, a lead, and an observation window. The working fluid is water and helium, and the maximum pressure inside the canister is 1.1 MPa and the minimum pressure is 0.05 kPa. The maximum temperature of the surface of the cladding was designed to be 500°C, and the maximum temperature of the sealing to keep airtightness was designed to be 250°C. To satisfy this condition, we plan to evaluate the leak rate below 10−5 std.cm3·s−1, which is equivalent to helium tightness. The maximum heat of decay per fuel rod is 13 W, and one assembly is up to 3 kW. Production of the test equipment is expected to be completed in the first half of next year, and testing is scheduled to begin in the second half of next year. The test will evaluate all environments that the spent nuclear fuel may experience, such as dry normal conditions, abnormal conditions, wet conditions, and dry conditions. All data will be used for interpretation verification purposes.
        8.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2018년 여름의 폭염은 기상관측을 시작(1907년 10월 1일)한 이래 111년 만에 가장 높은 기온을 기록하였는데, 서울은 39.6℃를 기록(2018년 8월 1일)하여 종전의 기록인 38.4℃(1994년 7월 24일)를 뛰어넘었다. 열섬현상으로 인해 도시의 온도가 상승하고 하절기 열쾌적성이 저하됨에 따라 하절기 열환경 개선에 대한 연구가 지속적으로 진행되고 있다. 본 연구의 목적은 조경공 사 전·후의 온도저감 및 외부공간 이용자가 느끼는 열환경 개선에 대하여 정량적으로 검증하여 설계 및 시공단계에서 활용할 수 있는 기초적 자료를 제공하고자 하였다. 연구결과는 다음 과 같다. 미기후 실측에 의한 측점별 조경공사 전·후의 온도저감을 비교 분석한 결과, 오전 10 시 조경공사 전 평균온도는 34.5℃이며, 조경공사 후 평균온도는 32.5℃로 2.0℃온도저감 효과가 있는 것으로 분석되었으며, 오후 2시 조경공사 전 평균온도는 37.5℃이며, 조경공사 후 평균 온도는 35.9℃로 1.6℃ 온도저감 효과가 있는 것으로 분석되었다. 오후 5시 조경공사 전 평균온 도는 33.8℃이며, 조경공사 후 평균온도는 31.2℃로 2.6℃ 온도저감 효과가 있는 것으로 분석되었다. 연구결과의 활용방안으로 정량적인 연구방법과 결과는 디자이너의 직관적인 조경설계에 객관성을 부여하는 기초자료로서 활용이 가능할 것이다.
        4,000원
        10.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        RTG (Radioisotope Thermoelectric Generator) is a power generation system producing electricity by converting the thermal energy gained from shielding radioisotope. RTG generates power without being charged from outside and as it utilizes radioisotope, RTG mainly serves as an energy source operated for a specific purpose in environment hardly accessible by human. Its design structures vary according to its purpose of operation, thermal source of operation and environment of operation. Since RTG is a power generation system, it should have the highest power efficiency with limited heat source. In this study, heat transfer analysis was implemented to investigate diverse design factors influencing the insulation system of RTG for aerospace use. Design factors considered in this study were silver coating, number of radiation shields inside vacuum insulation and supporter material. As a result, it was found that, depending upon design factors, insulation efficiency increased by 9.3% and finally insulation efficiency of RTG v2.0 was estimated at 84.3%.
        4,000원
        11.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Response surface methodology (RSM) based on a Box-Behnken Design (BBD) was applied to optimize the thermal-alkaline pre-treatment operating conditions for anaerobic digestion of flotation scum in food waste leachate. Three independent variables such as thermal temperature, NaOH concentration and reaction time were evaluated. The maximum methane production of 369.2 mL CH4/g VS was estimated under the optimum conditions at 62.0°C, 10.1% NaOH and 35.4 min reaction time. A confirmation test of the predicted optimum conditions verified the validity of the BBD with RSM. The analysis of variance indicated that methane production was more sensitive to both NaOH concentration and thermal temperature than reaction time. Thermal-alkaline pretreatment enhanced the improvement of 40% in methane production compared to the control experiment due to the effective hydrolysis and/or solubilization of organic matters. The fractions with molecular weight cut-off of scum in food waste leachate were conducted before and after pre-treatment to estimate the behaviors of organic matters. The experiment results found that thermal-alkaline pre-treatment could reduce the organic matters more than 10kD with increase the organic matters less than 1kD.
        4,000원
        12.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study will design the structural optimization of 30W LED heat sink using the thermal conductive plastic materials. The advantages of thermal conductive plastic heat sink are having formability and being able to lighten products. A heat sink was optimized in terms of the number, and the thickness of fins and the base thickness of the heat sink, using the Heatsinkdesigner software. Also by using SolidWorks Flow simulation and thermal analysis software, the thermal characteristics of the heat sink were analyzed. As the result, the optimized heat sink has 22 fins, which are 1.5mm thick and a 3.8mm-thick base. The weight of the heat sink was 310g, and the highest and the lowest temperature were 64.93℃ and 45.96℃ respectively. Because of the low thermal conductivity of the thermal conductive plastic, the highest and the lowest temperature of the thermal conductive plastic heat sink were 14.3℃ higher and 2.19℃ lower respectively than an aluminum heat sink
        4,000원
        13.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 화력발전소에서 온배수의 형태로 배출되는 폐열을 히트펌프의 열원으로 이용하여 온실의 난방에 활용할 수 있는 히트펌프 시스템을 설계 제작하였으며, 난방 성능을 분석하여 PE 파이프 열교환기의 설계기준을 제시하고자 하였다. PE 파이프 열교환기의 내경은 20mm, 두께는 2mm였으며, Roll의 직경은 1,000mm로 하였다. 연구결과 PE파이프 열교환기의 적정 길이는 1.0RT당 75m로 설계하는 것이 바람직할 것으로 판단되었으며, 이때 히트펌프시스템의 난방성능계수(COPh)는 3.8로 나타났다.
        4,000원
        14.
        2011.08 구독 인증기관 무료, 개인회원 유료
        To maintain thermal performance of the Ondol system, elements of the system must be optimally designed so that the thermal performance and hot water flow can be efficiently transmitted from the Ondol system in apartment units. The purpose of this study is to propose the optimal design data and applicable design process of the Ondol system. The design process should incorporate the energy-efficient system as well as a comfortable indoor thermal environment in the early design stage.
        4,000원
        15.
        2008.02 구독 인증기관 무료, 개인회원 유료
        To maintain optimal performance in a floor heating system, the elements of system must be consisted of the adequate structure in order that the heat flow is efficiently transmitted from the floor structure to indoor space. The aims of this study is to propose the optimal structure type and present applicable design data of a floor heating system. The design data suggested in this study can be applied to cooperate energy efficiency design as well as comfortable indoor thermal environment in the early design stage.
        4,000원
        16.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, it was a very interesting subject to reduce the weight of the parts in the whole industry. A number of manufacturers have tried to reduce the weight as making light material alloy like aluminium and magnesium alloys. Agitation system can maximize the density of melted metal alloy and improve the mechanical property. Ultrasonic agitation system is considered as the method of agitation for making aluminium alloy product. In this study, I've designed the cooling unit of the ultrasonic agitation system. The design of the cooling unit was made through the analysis of the thermal behavior and thermal stress of the agitation system. The results of analysis showed that the cooling units must be applied to the agitation system. They also showed the flux of the cooling water and the effects of the cooling system.
        4,000원
        17.
        2006.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Based on the practical process engineering design and commissioning and startup operation experiences focused on chemical process safety, the comprehensive review of engineering design and installation of the thermal relief valve with its surrounding facility in a chemical plant piping system is provided to enhance the better understanding of the piping system of characteristics of thermal relief valve which is comprised of the theoretical approach, correlation in terms of temperature and pressure increase caused by external heat supply in a piping system, consideration of thermal relief valve engineering design, pressure relieving system of serial thermal relief valves and exception of their installation. It is earnestly suggested that following topic should be implemented during thermal relief valve engineering design, installation and normal operation as well.
        4,500원
        20.
        2013.11 KCI 등재 서비스 종료(열람 제한)
        국내 교량 설계에서 온도 하중에 대한 현재 LSD (한계 상태 설계법)는 다양한 교량 형식에 대한 동일한 기준을 적용하고 있다. 본 연구에서는 유효 온도를 산정하기 위해 실제 크기의 상판이 없는 강상자형거더교 시험체를 제작하였다. 1년동안 강상자형거더교모형의 18개 지점에서 온도데이터를 측정하였다. 측정된 데이터를 바탕으로 대기 온도에 따른 교량단면내 유효 온도를 산정 하였다. 유로 코드의 유효 온도와 비교할 때 실측 유효온도의 결과는 매우 유사한 상관 관계를 보였다. 따라서, 본 데이터를 기반으로 산정 된 유효 온도는 국내 교량설계에 온도 하중에 적합한 설계 기준을 제시하기 위한 기초 자료로 사용할 수 있다.
        1 2