검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50oC. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.
        4,000원
        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the thermal shock and ablation resistance of high thermal conductivity carbon/carbon composites, carbon nanotubes (CNTs) were introduced by electrophoretic deposition. After modification, the flexural strength of the composites increases by 53.0% due to the greatly strengthened interfaces. During thermal shock between 1100 °C and room temperature for 30 times, the strength continues to increase, attributed to the weakened interfaces in favor of fiber and CNT pull-out. By introducing CNTs at interfaces, thermal conductivity of the composites along the fiber axial direction decreases and that along the fiber radial direction increases. As the thermal shock process prolongs, since the carbon structure integrity of CNT and matrix in the modified composites is improved, the conductivity increases whatever the orientation is, until the thermal stress causes too many defects. As for the anti-ablation performance, the mass ablation rates of the CNT-modified composites with fibers parallel to and vertical to the flame decrease by 69.6% and 43.9% respectively, and the difference in the mass ablation rate related with fiber orientations becomes much less. Such performance improvement could be ascribed to the reduced oxidative damage and the enhanced interfaces.
        4,500원
        3.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cordierite composed of an alumina-silica-magnesia compound has a low coefficient of thermal expansion(CTE) and excellent thermal shock resistance. It also has a low dielectric constant and high electrical insulation. However, due to low mechanical strength, it is limited for use in a ceramic heater. In this study, ZrO2 is added to an 80 wt% cordierite-20 wt% mullite composition, and the effect of ZrO2 addition on the mechanical strength and thermal shock resistance is investigated. With an increasing addition of ZrO2, cordierite-mullite formed ZrO2, ZrSiO4 and spinel phases. With sintering conducted at 1400 °C with the addition of 5 wt% ZrO2 to 80 wt% cordierite-20 wt% mullite, the most dense microstructure forms along with an excellent mechanical strength with a 3-point flexural strength of 238MPa. When this composition is quenched in water at ΔT = 400℃ , the 3-point flexural strength is maintained. Moreover, when this composition is cooled from 800℃ to air, the 3-point flexural strength is maintained even after 100 cycles. In addition, the CTE is measured as 3.00 × 10−6·K−1 at 1000℃ . Therefore, 80 wt% cordierite-20 wt% mullite with 5 wt% ZrO2 is considered to be appropriate as material for a ceramic heater.
        4,000원
        4.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.
        4,000원
        5.
        2007.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper was studied on the characteristics of acid resistance and thermal shock for epoxy coatings in the strong acidic environment. The exhaust gas system, such as a air preheater, desulfurization equipment, for industrial boiler is damaged by dew point corrosion. To protect the acid corrosion, the coating using nonmetal was applied. The electrochemical polarization test, acid resistance and thermal shock test for epoxy coatings were carried out. And the acid resistance and thermal shock characteristics, aspect, and electrochemical anti-corrosion characteristics for epoxy coatings in the strong acidic environment were considered. The main results are as followings: As the epoxy glass flake coating by acidic thermal shock was damaged to the crack, blistering and elution etc., the current density of epoxy glass flake coating is high. But the damage of epoxy metal complex coating by acidic thermal shock was not occurred. Therefore the characteristics of acid resistance and thermal shock for epoxy metal complex coating is better than those for epoxy glass flake coating.
        4,000원
        6.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and mechanical properties of nanocomposites synthesized by chemical processing were investigated. The nanocomposites containing 15 vol% hexagonal BN (h-BN) were fabricated by hot-pressing powders covered with turbostratic BN (t-BN). The t-BN coating on particles was prepared by heating particles covered with a mixture of boric acid and urea in hydrogen gas. TEM observations of this nanocomposite revealed that nano-sized h-BN particles were homogeneously dispersed within grains as well as at grain boundaries. The strength and thermal shock resistance were significantly improved in comparison with the microcomposites.
        4,000원
        7.
        1998.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have evaluated the role of Ag additions on the strength, fracture toughness, elastic modulus and resistance to thermal shock of (YBCO) superconductor. Addition of 10 vol.% Ag improved strength and fracture toughness, whereas, decreased elastic modulus of YBCO. In addition, YBCO-Ag composites improved resistance to thermal shock probably due to enhanced strength, fracture toughness and thermal conductivity as a result of Ag addition. It is to be noted that YBCO-Ag made by mixing with solution showed slightly higher strength, fracture toughness and resistance to thermal shock, compared to that made by mixing with metallic Ag powder. These improvements are believed to be due to the microstructure of more finely and uniformly distributed Ag particles.
        4,000원
        8.
        1994.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        여러가지 화학 조성을 갖는 aluminium titanate mullite복합제는 AI2O3분말을 알콜 분산용액에서 Si(OC2H5)4과 Ti(OC2H5)4의 단계적인 가수 분해로 합성되었다. Mullite함량이 20-50vol%인 소결체(1600˚C/2h)는 비교적 높은 강도와 낮은 열팽창 계수를 갖는 aluminium titanate를 개발할 수 있는 가능성을 보였다. 이와 같은 결과는 mullite로 인한 aluminium titanate의 입자 크기의 억제와 미세균열에 의하여 얻어졌다. aluminium titanate의 함량이 70-80vol% 복합재료는 우수한 열충격 저항성을 지녔으며 상온 강도는 31-45MPa이었다. 열충격 저항성, 영률, sound velocity화 열팽창 계수가 연구되었다.
        4,000원