검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        3.
        2018.05 구독 인증기관·개인회원 무료
        In recent years, there have been applied methods for minimizing noise by adjusting the method of installing soundproof walls, soundproof tunnels, soundproofing rims, environmental facilities, etc., and the shape of the surface texture of tire treads and packaging materials for the purpose of reducing road noise. Low noise pavement methods such as rubber asphalt (CRM), open graded asphalt concrete (OGAC), permeable Friction Courses (PFC), open graded friction courses (OGFC) and porous asphalt have been applied to reduce road noise. Especially, porous pavement is the most widely used low noise pavement with porous structure, which can reduce noise and drain water through continuous void of pavement. On the other hand, porous asphalt pavement has problems such as reduction of noise reduction effect and difficulty of road surface management due to void closing and increase of construction cost. The purpose of this study is to develop ultra-thin layer hot mix asphalt pavement method which maximizes road noise reduction effect by surface micro voids (Recover asphalt pavement) to improve void clogging of present porous pavement method. For this study, maximum size 5mm aggregate and cationic-treated fiber reinforced asphalt modifier (CSM) were used. The Marshall design method was applied grain-size distribution curve was based on SMA mix design. Marshall test, TSR, MMLS3 test and Hamburg test were carried out to evaluate the mechanical properties of ultra -thin layered asphalt pavement method with surface micro voids. Also, the effect of road noise reduction was evaluated through field application in urban area.
        4.
        2017.05 구독 인증기관·개인회원 무료
        We report on a unique fabrication technique, DSC for high performance PA TFC RO membranes. DSC allows the simultaneous and continuous spreading of two reactive monomer solutions to create an unsupported PA layer, which is then adhered onto a porous support to form a membrane. DSC facilitates the characterization of the PA layer structure by easily isolating it. The DSC-PA layer exhibits a thinner and smoother structure with a more wettable and less negatively charged surface than one prepared via conventional interfacial polymerization (IP). DSC enables the formation of an extremely thin (~9 nm) and dense PA layer using a very low MPD concentration, which is not feasible by conventional IP. Importantly, the DSC-assembled membrane shows the excellent water flux and NaCl rejection, exceeding both the IP control and commercial RO membranes.
        5.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        (PDDA/SiO2) thin films that consisted of positively charged poly (diallyldimethylammonium chloride) (PDDA) and negatively charged SiO2 nanoparticles were fabricated on a glass substrate by an applying voltage layer-by-layer (LBL) self-assembly method. In this study, the microstructure and optical properties of the (PDDA/SiO2) thin films coated on glass substrate were measured as a function of the applied voltage on the Pt electrodes. When 1.0 V was applied to a Pt electrode in a PDDA and SiO2 solution, the thickness of the (PDDA/SiO2)10 thin film increased from 79 nm to 166 nm. The surface roughness also increased from 15.21 nm to 33.25 nm because the adsorption volume of the oppositely charged PDDA and SiO2 solution increased. Especially, when the voltage was applied to the Pt electrode in the SiO2 solution, the thickness increase of the (PDDA/SiO2) thin film was larger than that obtained when using the PDDA solution. The refractive index of the fabricated (PDDA/SiO2) thin film was ca. n = 1.31~1.32. The transmittance of the glass substrate coated by (PDDA/SiO2)6 thin film with a thickness of 106 nm increased from ca. 91.37 to 95.74% in the visible range.
        4,000원
        6.
        2001.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        교류구동형 플라즈마 표시소자의 보호막으로 사용되는 MgO의 특성향상을 위하여 기존의 MgO에 양이온이 등전적으로 치환될 수 있는 ZnO를 소량 첨가하여 고주파 마그네트론 스퍼터링 방법으로 Mg1-xZ nxO박막을 성장시키고 박막의 전기적, 광학적 특성을 조사하였다. ZnO농도가 0.5 at%, 1at%인 Mg1-xZ nxO 박막을 보호막으로 갖는 PDP 테스트 판넬을 제작하고 ZnO의 첨가가 소자의 방전전압과 메모리 이득에 미치는 영향을 살펴보았다. ZnO농도가 0at%, 0.5 at%, 1at%인 Mg1-xZ nxO 박막의 광투과율은 ZnO 첨가에 따라 변화를 보이지 않으나 유전상수는 다소 증가하는 경향을 보였다. ZnO의 농도가 0.5 at%인 Mg1-xZ nxO 박막을 보호막으로 갖는 PDP 소자의 방전개시전압과 방전유지 전압이 MgO 박막을 보호막으로 갖는 소자에 비해 20V까지 낮아졌고, 결과적으로 메모리계수는 다소 증가하였다. ZnO농도가 0.5 at%, 1at%인 Mg1-xZ nxO 박막을 보호막으로 갖는 소자에서 ZHO의 첨가에 비례하여 방전세기 (플라즈마 밀도)가 증가하였다.도)가 증가하였다.도)가 증가하였다.
        4,000원