The temperature distributions were numerically calculated for the two-dimensional transient conduction heat transfer problem of a square plate. The obtained temperature distributions were converted into colors to create images, and they were provided as learning and test data of CNN. Classification and regression networks were constructed to predict representative wall temperatures through CNN analysis. As results, the classification networks predicted the representative wall temperatures with an accuracy of 99.91% by erroneously predicting only 1 out of 1100 images. The regression networks predicted the representative wall temperatures within errors of C. From this fact, it was confirmed that the deep learning techniques are applicable to the transient conduction heat transfer problems.
The occurrence of exotic weeds and their influx into farmlands due to climate change poses many problems. Therefore, it is necessary to generate a prediction model for the occurrence pattern of these exotic weeds based on scientific evidence and devise prevention measures. The photosynthetic apparatus is known as the most temperaturesensitive component of a plant cell and its initial response to temperature stress is to inhibit the activation of photosystem II. This study investigated the potential of OJIP transients in assessing temperature stress in exotic weeds. The four exotic weeds currently flowing into Korean farmlands include Amaranthus spinosus, Conyza bonariensis, Crassocephalum crepidioides, and Amaranthus viridis. These weeds were treated at 5°C, 10°C, 15°C, 20°C, 25°C, 30°C, 35°C, and 40°C and the OJIP curves and JIP parameters were measured and analyzed. The results showed that heat and chilling stress affected the photosystem II (PSII) electron transport of A. spinosus, whereas C. crepidioides and A. viridis were more affected by high-temperature stress than by low-temperature stress. Lastly, C. bonariensis showed resistance to both high and low-temperature stress. The results of this study suggest that OJIP transients and JIP parameters can be used to analyze damage to the photosynthetic apparatus by temperature stress and that they can serve as sensitive indicators for the occurrence pattern of exotic weeds.
The Heavy Water Reactor(HWR) Heat Transport(HT) system transient analysis for the design of major nuclear equipment during normal and abnormal operating conditions was performed. The compliance with requirements of AECB Regulatory Document R-77 for CANDU reactor was estimated in CANDU-9 nuclear reactor. The analysis results showed that for each postulated accident the peak pressure values in the reactor headers are within the acceptance criteria given in ASME code requirements and the fuel overheating is prevented. The analysis results showed that the flow reversal through the fuel channel occurred but didn't result in any damage on the fuel bundle.
In this work, transient liquid phase (TLP) bonding of Ni-Cr heat resisted cast alloy (HP) was investigated. And also the behaviors of the solid particles distributed in the interlayer during TLP bonding were investigated. The MBF-60 and solid particles (Ni, Fe, and powders respectively) added MBF-60 which will be a liquid phase coexisting with solid particles at the bonding temperature were used as insert metal. The effective and sound bonding was possible by spark plasma sinter-bonding due to the differences of electric resistance between base metal and liquid insert layer which creates high temperature region. During the isothermal solidification, particles and solid particles of liquid phase sintered insert metal have shown no growth, while Ni and Fe particles grow rapidly. In this TLP bonding using the MBF-60 and distributed Fe, Ni particles as insert materials, the whole isothermal solidification process was dominated by the growth rate of the solid particles distributed in the interlayer.