검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The conversion of CO2 into solar fuels by photocatalysis is a promising way to deal with the energy crisis and the greenhouse effect. The introduction of oxygen vacancy into semiconductor has been proved to be an effective strategy for enhancing CO2 photoreduction performance. Herein, TiO2- x nanostructures have been prepared by a simple solvothermal method and engineered by the reaction time. With the prolonging of reaction time, the oxygen vacancy signal gradually increases while the band gap becomes narrow for the as-synthesized TiO2- x nanostructures. The results show that the TiO2- x-6 h, TiO2- x-24 h, and TiO2- x-48 h samples have the main product of CH4 (more) and CO (less) for CO2 photoreduction. Among the three oxygen vacancy photocatalysts, the TiO2- x-24 h sample shows the highest CH4 generation rate of 41.8 μmol g− 1 h− 1. On the basis of photo/electrochemical measurements, the TiO2- x-24 h sample exhibits efficient electron–hole separation and charge transfer capabilities, thus allows much more electrons to participate in the reaction and finally promotes the photocatalytic CO2 reduction reaction. It further confirms that the optimization of oxygen vacancy concentration could facilitate the photoinduced charge separation and accordingly improve photocatalytic CO2 conversion.
        4,000원
        2.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Single C-vacancy and pyridine-like N3 defect are usually formed on the single-walled carbon nanotube (SWCNT) and they have unique properties for potential applications. In this paper, we use density functional theory to investigate the discrepancies of such two structures from the geometric and electronic aspects. Our results indicate that the existed single vacancy in the SWCNT can lead to somewhat electron localization because of the lone pair electrons; while the N3 embedded SWCNT ( N3-SWCNT) has stronger chemical reactivity and electron localization than the single vacancy SWCNT (SV-SWCNT) due to the great charge transfer between N3 group and C atom on the tube sidewall. Through the investigation of Ag-doping on the above two nano-structures, we found that the single Ag atom is much more stably adsorbed on the N3- SWCNT sidewall compared with SV-SWCNT, forming higher binding energy and higher electron transfer. Our calculation would shed light on the physicochemical property of SWCNT-based material and thus extend their potential applications in many fields.
        4,000원
        3.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Based on the M06-2X density functional, the catalytic oxidation of CO by O2 over Mo-embedded graphene was investigated in detail. The model with molybdenum atom embedded in double vacancy (DV) in a graphene sheet was considered. It is found that the complete CO oxidation reactions over Mo-DV-graphene include a two-step process, in which the first step prefers to Langmuir–Hinshelwood mechanism and followed the progress of CO oxidation with a remaining atomic Otop. Compared with the structure of Mo atom decorated at the single carbon vacancy on graphene (Mo-SV-graphene), the catalytic activity of Mo-DV-graphene is weaker. The present results imply that the catalytic activity of Mo-embedded graphene for CO oxidation can be improved by increasing the ratio of single vacancy (SV).
        4,000원
        4.
        2008.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Calcia (CaO) stabilized cubic-HfO2 is studied by density functional theory (DFT) with generalized gradient approximation (GGA). When a Ca atom is substituted for a Hf atom, an oxygen vacancy is produced to satisfy the charge neutrality. The lattice parameter of a 2×2×2 cubic HfO2 supercell then increases by 0.02 Å. The oxygen atoms closest to the oxygen vacancy are attracted to the vacancy as the vacancy is positive compared to the oxygen ion. When the oxygen vacancy is located at the site closest to the Ca atom, the total energy of HfO2 reaches its minimum. The energy barriers for the migration of the oxygen vacancy were calculated. The energy barriers between the first and the second nearest sites, the second and the third nearest sites, and the third and fourth nearest sites are 0.2, 0.5, and 0.24 eV, respectively. The oxygen vacancies at the third and fourth nearest sites relative to the Ca atom represent the oxygen vacancies in undoped HfO2. Therefore, the energy barrier for oxygen migration in the HfO2 gate dielectric is 0.24 eV, which can explain the origin of gate dielectric leakage.
        4,000원