검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A zinc-air battery consists of a zinc anode, an air cathode, an electrolyte, and a separator. The active material of the positive electrode is oxygen contained in the ambient air. Therefore, zinc-air batteries have an open cell configuration. The external condition is one of the main factors for zinc-air batteries. One of the most important external conditions is temperature. To confirm the effect of temperature on the electrochemical properties of zinc-air batteries, we perform various analyses under different temperatures. Under 60 oC condition, the zinc-air cell shows an 84.98 % self-discharge rate. In addition, high corrosion rate and electrolyte evaporation rate are achieved at 60 oC. Among the cells stored at various temperature conditions, the cell stored at 50 oC delivers the highest discharge capacity; it also shows the highest self-discharge rate (65.33 %). On the other hand, the cell stored at 30 oC shows only 2.28 % self-discharge rate.
        4,000원
        2.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A zinc-air battery is one of most promising advanced batteries due to its high specific energy density, low cost, and environmental friendliness. However, zinc anodes in zinc-air batteries lead to several issues including self-discharge, corrosion reaction, and hydrogen evolution reaction (HER). In this paper, viscosity of electrolyte has been controlled to suppress the corrosion reaction, HER, and self-discharge behavior. Various viscosity average molecular weights of poly(acrylic acid) (PAA) are adopted to prepare the electrolyte. The evaporation of electrolytes is proportional to the increase in molecular weight. In addition, enhanced self-discharge behavior is obtained when the gelling agent with high molecular weight is used. In addition, the zinc-air cell assembled with lower viscosity average molecular weight of PAA (Mv ~ 450,000) delivers 510.85 mAh/g and 489.30 mAh/g of discharge capacity without storage and with 6 hr storage, respectively. Also, highest capacity retention (95.78 %) is obtained among studied materials.
        4,000원