For estimating ground motion intensity measures on the surface from seismic sensors installed in structures, it is crucial to correct structural response effects embedded in the recorded signals. This study proposes a model for peak ground acceleration (PGA) amplification based on VS30, derived from multi-degree-of-freedom analysis. PGA amplification factor (AFPGA) is defined as the ratio of peak floor acceleration (PFA) of structures to PGA. The model includes three key input parameters: the natural period of the structures (Tn), the ratio of stories to the total number of stories in the structures, and the time-averaged shear wave velocity down to a depth of 30 meters. It is developed using 78 ground motion records from both domestic and international earthquakes. A LOESS smoothing technique is applied using 3 span values, with the optimal span of 0.1 is determined based on RMSE performance and an analysis of local trend characteristics in the dataset. The model is verified using empirical data from the CESMD global strong motion database, which includes classification by Tn into short, intermediate, and long periods. The results show that although the model tends to predict higher AFPGA values than those observed in real structures, it effectively reflects the overall amplification trends. This approach enables the pre-earthquake estimation of structural amplification, allowing for the use of seismic sensors installed in structures as a complementary monitoring network for seismic response.
본 논문은 미국의 초현실주의 아상블라주 작가로 알려진 조셉 코넬의 초기 작업인 1930-1940년대에 병행했던 두 형식인 상자 구조물 아상블라주와 필름 콜라주에 주목하여 다양한 기술 매체를 통해 시청각적 감각을 확장한 예술적인 시도를 살펴본다. 그리고 이 시기 코넬의 매체 혼성적인 실험의 내재적인 동력으로서 뇌성마비로 인해 신체적·언어적 제약을 가졌던 동생 로버트 코넬과 함께 지낸 경험에 주목한다. 코넬에게 로버트는 돌봄의 대상에 그치지 않고 오히려 사회적인 관습과 성인의 타성을 벗어나게 하는 타자적인 존재이자 그의 감각적인 실험 의 원동력이었다. 코넬은 인간과 자연의 움직임을 기계적으로 산출한 원초적인 시각 매체에 관심을 가지고 쉐도우박스, 원시적 광학 장치, 무성 영화와 같은 과거의 매체를 인간의 지각과 감각을 확장하는 장치로서 긍정적으로 수용했다. 코넬의 상자 구조물과 필름 콜라주는 거동이 불편한 로버트가 감각적 유희를 즐기면서도 신체적인 제약을 넘어 열린 시공간의 세계를 상상할 수 있도록 하였다. 로버트와 보낸 시간의 기 억을 담고 있는 그의 필름 콜라주는 분절적으로 누적된 시간과 다층적으로 중첩된 감정을 담은 비선형적인 심연의 시간을 다룬 독자적인 실험 이었다.
본 연구에서는 구조물의 응답 데이터를 기반으로 고유진동수, 감쇠비 등 동특성과 풍하중 모델의 파라미터를 동시에 추정할 수 있는 스펙트럼 백색화 기반 식별 기법을 제안하고, 이를 실제 40층 고층 구조물에 적용하여 실용성과 정확도를 평가하였다. 기존 연 구에서는 본 기법을 수치 시뮬레이션 및 풍동 실험에 적용하여 그 타당성을 입증한 바 있으나, 실계측 응답 데이터를 활용한 실구조물 적용에 대해서는 검증이 이루어지지 않았다. 본 연구는 이를 확장하여, 장기간 계측된 고층 건축물의 진동 응답을 분석하고, 각 주요 모드에 대해 백색화 처리를 수행함으로써 구조물 전달함수 및 풍하중 전달함수의 파라미터를 최적화 기반으로 동시 추정하였다. 특히 백색 잡음의 누적 파워 스펙트럼 길이를 목적함수로 설정함으로써, 기존 커브 피팅 기반 기법 대비 감쇠비 추정의 정확도와 안정성을 향상시켰다. 분석 결과는 전통적인 모달 식별 기법(예: SSI)과의 비교를 통해 제안 기법의 유효성을 입증하였으며, 풍하중 모델 파라미 터까지 포함하는 통합적 구조 해석 프레임워크로서의 가능성을 제시하였다. 본 연구는 향후 구조물의 풍응답 예측, 하중 생성 모델 구 축, 구조 건전도모니터링(SHM) 및 디지털 트윈 기반 해석 등 다양한 실무 응용에 기여할 수 있을 것으로 기대된다.
본 연구에서는 지반-구조물 상호작용(SSI, Soil-Structure Interaction) 해석에서 계산 효율성과 해석 정확성을 동시에 확보하기 위해 철근 콘크리트 기둥의 단순 모델링 기법과 PML(Perfectly Matched Layer) 요소를 결합한 방법을 제안하였다. 단순 모델링 기법은 상 세모델과 비교하였을 때 강성 및 고유진동수 차이가 1% 이내로 나타나 구조물의 정적 및 동적 거동을 효과적으로 모사할 수 있음을 확인하였다. PML 요소를 적용한 SSI 해석은 반무한지반 모델 대비 계산 영역을 1/5로 줄이고, 해석 시간을 7% 수준으로 단축하면서 도 기둥의 고유진동수가 동일하게 나타났다. 이를 통해 PML 요소가 계산 비용을 대폭 줄이면서도 해석 결과의 정확성을 유지할 수 있음을 확인하였다.
Damage to masonry walls can occur for various factors. It is often believed that heavy rains and increased rainfall cause soil and sand to flow into the stone masonry walls, leading to this damage. However, no research has definitively proven or analyzed this causal relationship.This study aims to evaluate the causes of damage to masonry walls due to severe rainfall and to propose preventive strategies to mitigate future risks. The assessment found that, as a form of cultural heritage, the stone masonry walls did not exhibit any structural or material issues that could compromise their stability. However, concerns were raised about potential problems arising from hydraulic pressure due to rising groundwater levels. Calculations and computer simulations confirmed that the risk of collapse increases with higher groundwater levels. Therefore, it is essential to carry out repairs and reinforcements to prevent a recurrence of this situation.
By developing molds and facilities to horizontally mold the functional part of the dry-cast concrete block, We intend to develop molds and a series of facilities to horizontally mold the functional part of the dry-cast concrete block to increase production per cycle while maintaining existing production methods and major facilities. In order to do so, CAE analysis is first required to develop molds and facilities for horizontally molding the functional part of the drycast concrete block in the horizontal direction. The procedure will be carried out by reviewing the validity of boundary conditions and physical properties, 3D modeling, grid generation, construction of analysis models, model validity, analysis according to frequency changes, and analysis according to physical properties. First, through the comparison of two-point support, three-point support, and two-point and three-point support in the constraint conditions, We would like to compare it with the actual molded product in the horizontal direction.
By developing molds and facilities to horizontally mold the functional part of the dry-cast concrete block, We intend to develop molds and a series of facilities to horizontally mold the functional part of the dry-cast concrete block to increase production per cycle while maintaining existing production methods and major facilities. In order to do so, CAE analysis is first required to develop molds and facilities for horizontally molding the functional part of the drycast concrete block in the horizontal direction. The procedure will be carried out by reviewing the validity of boundary conditions and physical properties, 3D modeling, grid generation, construction of analysis models, model validity, analysis according to frequency changes, and analysis according to physical properties. First, through the comparison of two-point support, three-point support, and two-point and three-point support in the constraint conditions, We would like to compare it with the actual molded product in the horizontal direction. But first of all, it is considered three-point support in the constraint conditions in this paper.
본 논문에서는 구조물 보수 및 보강 작업 중 발생할 수 있는 안전사고를 방지하기 위해 지능형 동시 인상 시스템을 개발하였다. 시 스템은 인상 장치와 인상 지점 결정 및 자동 인상 기능을 갖춘 통계분석 프로그램으로 구성되며, 자동화된 과정을 통해 일관된 시공 품질을 보장할 수 있다. 통계분석 프로그램은 피어슨 상관관계 분석 알고리즘을 사용하여 각 지점 간 인상량의 선형 관계를 평가하고, 가장 약한 관계성을 지닌 지점을 다음 인상 지점으로 결정한다. 이러한 과정을 반복하여 지점 간 편차를 최소화하고 정밀한 동시 인상 이 가능하게 한다. 실제 교량을 대상으로 실험한 결과, 각 지점의 변위는 목표 인상량에 근접한 높은 정밀도와 허용 가능한 범위의 편 차를 나타내었다. 또한, 인상 과정에서도 지점 간 편차가 감소하고 높은 선형 관계를 유지하여 동시 인상이 성공적으로 수행됨을 확인 하였다. 본 시스템은 선행 연구와 비교하여 성능이 개선되었으며, 복잡한 구조물의 정밀한 인상 작업에 효과적으로 적용 가능함을 입 증하였다.
As global greenhouse gas reduction regulations are strengthened and the demand for eco-friendly energy increases, renewable energies, including offshore wind power, are growing rapidly. Unlike onshore wind power generation, offshore wind power is located in the ocean. As a result, the offshore wind power substructure is exposed to low temperatures, corrosion, and continuous fatigue loads. Therefore, selecting appropriate materials and welding techniques is crucial for durability. In this study, FCAW welding was performed on S355ML steel (EN10025) for offshore wind power applications. After the welding process, the mechanical properties of the welded joint were evaluated through tensile, low-temperature impact, and hardness tests to assess the welding condition. The study revealed that the tensile and yield strength of the welded joint were superior to those of the base material. Additionally, the impact strength at low temperatures was confirmed to exceed the standard.
본 논문에서는 최근 제안된 신뢰성 기반 리질리언스 평가 기법을 기반으로 지역 별 지진 특성이 구조물의 리질리언스 성능에 미치 는 영향을 정량정으로 평가하였다. 이를 위해 한국 경주와 캐나다 밴쿠버를 대상 지역으로 선정하여 동일 구조물에 대한 리질리언스 해석을 수행하였다. 각 지역에 해당하는 설계 응답 스펙트럼곡선을 바탕으로 그에 상응하는 지진동을 생성하였고, 6층 철골 구조물 을 대상 구조물로 선정하여 해석을 수행하였다. 신뢰성 및 여용성 지수 산정 시 층간 변위의 한계상태 초과 사건을 구성요소의 파괴사 건으로, 최상단 변위의 한계상태 초과 사건을 시스템 단위의 파괴로 정의하였다. 고전 취약도 해석과 유사한 증분동적해석을 수행하 여 신뢰성과 여용성을 평가하였고, 계산 결과, 두 지역의 리질리언스에 유의미한 차이가 있음을 확인하였다. 특히 장주기 증폭이 예 상되는 밴쿠버 지역의 경우 경주에 비해 구조물의 여용성이 크게 감소하는 것을 확인하였다.
본 논문에서는 소성 설계를 기반으로 한 프레임 구조 설계 시, 기둥의 종류에 따른 구조 제작 비용과 거동의 차이를 연구하였다. 축 력과 횡력을 모두 받는 구조물에 적합한 기둥 부재를 선택하는 것이 중요하며, 플라스틱 설계 방법을 채택할 경우 기둥의 역할이 더욱 강조된다다. 특히, 횡력은 기둥의 연성을 요구하며, CFT(콘크리트 충전 강관)형 기둥은 RC(철근 콘크리트) 기둥보다 높은 강철 비율 로 연성을 확보하게 된다. 이 논문에서는 CFT 기둥이 RC 기둥보다 더 나은 성능을 보이는지 확인하기 위해 다양한 구조 유형에서 기 둥을 설계하고 분석하였다. CFT 기둥을 소성 설계에 채택함으로써 얻을 수 있는 이점은 다양한 구조 유형에 따른 하중 유형의 분석을 통해 제시한다.
저층 건축물의 횡-비틀림 거동은 고차모드 효과를 증폭시킬 수 있으며, 내진성능평가 시 관련 기준은 고차모드 지배 구조물에 대해 비선형정적해석과 함께 선형동적해석을 추가로 수행하도록 규정하고 있다. 선형동적절차에는 상당한 안전계수가 적용되므로, 이는 과도한 내진보강설계로 이어질 수 있다. 이를 방지하기 위해 엔지니어들은 내진보강 시 고차모드 효과를 줄이기 위해 시행착오법을 사용해 왔다. 그러나 시행착오법에는 많은 시간과 노력이 소요되며, 결정된 보강안이 최적인지 확인하기 어렵다. 본 연구는 저층 건 축물의 수학적 모델을 수립하고 응답스펙트럼해석을 통해 고차모드 효과에 비틀림이 독립적으로 미치는 영향을 파악하였다. 이를 바탕으로 효율적인 내진보강 설계를 위해 활용될 수 있는 도표와 절차를 제시하였다. 제시된 절차를 통해 최소한의 내진보강으로 횡- 비틀림 거동하는 저층 건축물의 고차모드 효과를 효율적으로 감소시킬 수 있음을 확인하였다.
The dome structure is suitable as a roof for large spatial structures because it can maintain the shape without installing columns in the internal space. However, the structure characteristics of the lower and upper structures of the dome structure are different, and damage may occur when an earthquake occurs. Therefore, in this study, mid-story isolation system was applied to the ribbed dome and geodesic dome structures to analyze the seismic response of the lower and upper structures according to the dome shape. As a result of the analysis, the displacement of the ribbed dome increased, but the deformation of the ribbed dome and the response of the lower structure decreased, and the seismic response of the geodesic dome decreased overall. From this result, the effect of the isolator according to the shape of the dome structure was confirmed, and the mid-story isolation is considered effective in reducing the seismic response of the upper and lower structures.
The purpose of this study is to experimentally analyze the seismic performance of a vertical irregular beam-column specimen reinforced with RBS (Replaceable Steel Brace System), a steel brace system. To evaluate the seismic performance of RBS, three specimens were manufactured and subjected to cycle loading tests. The stiffness ratio of beam-upper column of the non-retrofitted specimen was 1.2, and those of the two retrofitted specimens were 1.2 and 0.84. The stiffness ratio of the beam-lower column of all specimens was 0.36. And the stiffness ratio were used for variable. As a result of the experiment, the specimen retrofitted with RBS showed improved maximum load, effective stiffness and energy dissipation capacity compared to the non-retrofitted specimen with the same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance compared to the specimen with 1.2 stiffness ratio.