본 연구에서는 구조물의 응답 데이터를 기반으로 고유진동수, 감쇠비 등 동특성과 풍하중 모델의 파라미터를 동시에 추정할 수 있는 스펙트럼 백색화 기반 식별 기법을 제안하고, 이를 실제 40층 고층 구조물에 적용하여 실용성과 정확도를 평가하였다. 기존 연 구에서는 본 기법을 수치 시뮬레이션 및 풍동 실험에 적용하여 그 타당성을 입증한 바 있으나, 실계측 응답 데이터를 활용한 실구조물 적용에 대해서는 검증이 이루어지지 않았다. 본 연구는 이를 확장하여, 장기간 계측된 고층 건축물의 진동 응답을 분석하고, 각 주요 모드에 대해 백색화 처리를 수행함으로써 구조물 전달함수 및 풍하중 전달함수의 파라미터를 최적화 기반으로 동시 추정하였다. 특히 백색 잡음의 누적 파워 스펙트럼 길이를 목적함수로 설정함으로써, 기존 커브 피팅 기반 기법 대비 감쇠비 추정의 정확도와 안정성을 향상시켰다. 분석 결과는 전통적인 모달 식별 기법(예: SSI)과의 비교를 통해 제안 기법의 유효성을 입증하였으며, 풍하중 모델 파라미 터까지 포함하는 통합적 구조 해석 프레임워크로서의 가능성을 제시하였다. 본 연구는 향후 구조물의 풍응답 예측, 하중 생성 모델 구 축, 구조 건전도모니터링(SHM) 및 디지털 트윈 기반 해석 등 다양한 실무 응용에 기여할 수 있을 것으로 기대된다.
Damage to masonry walls can occur for various factors. It is often believed that heavy rains and increased rainfall cause soil and sand to flow into the stone masonry walls, leading to this damage. However, no research has definitively proven or analyzed this causal relationship.This study aims to evaluate the causes of damage to masonry walls due to severe rainfall and to propose preventive strategies to mitigate future risks. The assessment found that, as a form of cultural heritage, the stone masonry walls did not exhibit any structural or material issues that could compromise their stability. However, concerns were raised about potential problems arising from hydraulic pressure due to rising groundwater levels. Calculations and computer simulations confirmed that the risk of collapse increases with higher groundwater levels. Therefore, it is essential to carry out repairs and reinforcements to prevent a recurrence of this situation.
By developing molds and facilities to horizontally mold the functional part of the dry-cast concrete block, We intend to develop molds and a series of facilities to horizontally mold the functional part of the dry-cast concrete block to increase production per cycle while maintaining existing production methods and major facilities. In order to do so, CAE analysis is first required to develop molds and facilities for horizontally molding the functional part of the drycast concrete block in the horizontal direction. The procedure will be carried out by reviewing the validity of boundary conditions and physical properties, 3D modeling, grid generation, construction of analysis models, model validity, analysis according to frequency changes, and analysis according to physical properties. First, through the comparison of two-point support, three-point support, and two-point and three-point support in the constraint conditions, We would like to compare it with the actual molded product in the horizontal direction.
By developing molds and facilities to horizontally mold the functional part of the dry-cast concrete block, We intend to develop molds and a series of facilities to horizontally mold the functional part of the dry-cast concrete block to increase production per cycle while maintaining existing production methods and major facilities. In order to do so, CAE analysis is first required to develop molds and facilities for horizontally molding the functional part of the drycast concrete block in the horizontal direction. The procedure will be carried out by reviewing the validity of boundary conditions and physical properties, 3D modeling, grid generation, construction of analysis models, model validity, analysis according to frequency changes, and analysis according to physical properties. First, through the comparison of two-point support, three-point support, and two-point and three-point support in the constraint conditions, We would like to compare it with the actual molded product in the horizontal direction. But first of all, it is considered three-point support in the constraint conditions in this paper.
As global greenhouse gas reduction regulations are strengthened and the demand for eco-friendly energy increases, renewable energies, including offshore wind power, are growing rapidly. Unlike onshore wind power generation, offshore wind power is located in the ocean. As a result, the offshore wind power substructure is exposed to low temperatures, corrosion, and continuous fatigue loads. Therefore, selecting appropriate materials and welding techniques is crucial for durability. In this study, FCAW welding was performed on S355ML steel (EN10025) for offshore wind power applications. After the welding process, the mechanical properties of the welded joint were evaluated through tensile, low-temperature impact, and hardness tests to assess the welding condition. The study revealed that the tensile and yield strength of the welded joint were superior to those of the base material. Additionally, the impact strength at low temperatures was confirmed to exceed the standard.
본 논문에서는 소성 설계를 기반으로 한 프레임 구조 설계 시, 기둥의 종류에 따른 구조 제작 비용과 거동의 차이를 연구하였다. 축 력과 횡력을 모두 받는 구조물에 적합한 기둥 부재를 선택하는 것이 중요하며, 플라스틱 설계 방법을 채택할 경우 기둥의 역할이 더욱 강조된다다. 특히, 횡력은 기둥의 연성을 요구하며, CFT(콘크리트 충전 강관)형 기둥은 RC(철근 콘크리트) 기둥보다 높은 강철 비율 로 연성을 확보하게 된다. 이 논문에서는 CFT 기둥이 RC 기둥보다 더 나은 성능을 보이는지 확인하기 위해 다양한 구조 유형에서 기 둥을 설계하고 분석하였다. CFT 기둥을 소성 설계에 채택함으로써 얻을 수 있는 이점은 다양한 구조 유형에 따른 하중 유형의 분석을 통해 제시한다.
저층 건축물의 횡-비틀림 거동은 고차모드 효과를 증폭시킬 수 있으며, 내진성능평가 시 관련 기준은 고차모드 지배 구조물에 대해 비선형정적해석과 함께 선형동적해석을 추가로 수행하도록 규정하고 있다. 선형동적절차에는 상당한 안전계수가 적용되므로, 이는 과도한 내진보강설계로 이어질 수 있다. 이를 방지하기 위해 엔지니어들은 내진보강 시 고차모드 효과를 줄이기 위해 시행착오법을 사용해 왔다. 그러나 시행착오법에는 많은 시간과 노력이 소요되며, 결정된 보강안이 최적인지 확인하기 어렵다. 본 연구는 저층 건 축물의 수학적 모델을 수립하고 응답스펙트럼해석을 통해 고차모드 효과에 비틀림이 독립적으로 미치는 영향을 파악하였다. 이를 바탕으로 효율적인 내진보강 설계를 위해 활용될 수 있는 도표와 절차를 제시하였다. 제시된 절차를 통해 최소한의 내진보강으로 횡- 비틀림 거동하는 저층 건축물의 고차모드 효과를 효율적으로 감소시킬 수 있음을 확인하였다.
The dome structure is suitable as a roof for large spatial structures because it can maintain the shape without installing columns in the internal space. However, the structure characteristics of the lower and upper structures of the dome structure are different, and damage may occur when an earthquake occurs. Therefore, in this study, mid-story isolation system was applied to the ribbed dome and geodesic dome structures to analyze the seismic response of the lower and upper structures according to the dome shape. As a result of the analysis, the displacement of the ribbed dome increased, but the deformation of the ribbed dome and the response of the lower structure decreased, and the seismic response of the geodesic dome decreased overall. From this result, the effect of the isolator according to the shape of the dome structure was confirmed, and the mid-story isolation is considered effective in reducing the seismic response of the upper and lower structures.
The purpose of this study is to experimentally analyze the seismic performance of a vertical irregular beam-column specimen reinforced with RBS (Replaceable Steel Brace System), a steel brace system. To evaluate the seismic performance of RBS, three specimens were manufactured and subjected to cycle loading tests. The stiffness ratio of beam-upper column of the non-retrofitted specimen was 1.2, and those of the two retrofitted specimens were 1.2 and 0.84. The stiffness ratio of the beam-lower column of all specimens was 0.36. And the stiffness ratio were used for variable. As a result of the experiment, the specimen retrofitted with RBS showed improved maximum load, effective stiffness and energy dissipation capacity compared to the non-retrofitted specimen with the same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance compared to the specimen with 1.2 stiffness ratio.
본 연구에서는 박스 구조물의 부재력 예측을 위한 다양한 딥러닝 모델의 정확성을 비교하고자 하였다. 이를 위해 상용 유한 요소 프로그램인 MIDAS를 이용하여 300개의 유한요소모델을 작성하고, 수치해석을 수행하여 딥러닝 모델에 적용하기 위한 학습데이 터를 생성하였다. 또한, 딥러닝 모델의 정확성을 비교하기 위해 MLP, CNN, RNN 및 LSTM과 같은 다양한 신경망 모델과 Adam, SGD, RMSprop 및 Adamax 등 최적화 알고리즘을 교차 적용하여 16개의 딥러닝 모델을 생성하였다. 그 결과 Adam 최적화 알고리즘 이 모든 모델에서 가장 우수한 성능을 보여주었으며, 특히 MLP 모델에서 가장 높은 R2 값을 나타내었다. 이를 통해, 박스 구조물의 부재력 예측을 위한 최적의 딥러닝 모델 구성은 Adam optimizer와 MLP 구조임을 확인하였다.
This research introduces a novel probabilistic approach to consider the effects of uncertainty parameters during the design and construction process, providing a fresh perspective on the evaluation of the structural performance of reinforced concrete structures. The study, which categorized various random design and construction process variables into three groups, selected a two-story reinforced concrete frame as a prototype and evaluated it using a nonlinear analytical model. The effects of the uncertainty propagations to seismic responses of the prototype RC frame were probabilistically evaluated using non-linear dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. The derivation of seismic fragility curves of the RC frame from the probabilistic distributions as the results of uncertainty-propagation and the verification of whether the RC frame can meet the seismic performance objective from a probabilistic point of view represent a novel and significant contribution to the field of structural engineering.
본 논문에서는 초기 압축 성형 공정 조건들이 단섬유 강화 복합소재 구조물의 기계적 거동 특성에 미치는 영향을 효과적으로 반영 할 수 있는 압축 성형-구조 연계 해석 방안을 제안하였다. 압축 성형 해석을 바탕으로 초기 charge의 형상 및 배치에 따른 부위별 단섬 유 배향 특성을 분석하였으며, 평균장 균질화 이론을 통해 단섬유 배향 특성에 따른 등가 이방 물성을 도출하였다. 나아가, 단섬유 배 향 정보가 Mapping된 유한요소 모델을 기반으로 초기 공정 조건들에 의해 야기되는 부위별 거동 특성 변화를 고려할 수 있는 압축 성 형-구조 연계 해석을 진행하였다. 관련 수치 예제 검증을 통해 제시된 해석 방안은 압축 성형을 통해 제작된 단섬유 강화 복합소재 구 조물 설계 과정에서 효과적인 솔루션을 제공함을 확인하였다.
Strong ground motions at specific sites can cause severe damage to structures. Understanding the influence of site characteristics on the dynamic response of structures is crucial for evaluating their seismic performance and mitigating the potential damage caused by site effects. This study investigates the impact of the average shear wave velocity, as a site characteristic, on the seismic response of low-to-medium-rise reinforced concrete buildings. To explore them, one-dimensional soil column models were generated using shear wave velocity profile from California, and nonlinear site response analyses were performed using bedrock motions. Nonlinear dynamic structural analyses were conducted for reinforced concrete moment-resisting frame models based on the regional information. The effect of shear wave velocity on the structural response and surface ground motions was examined. The results showed that strong ground motions tend to exhibit higher damping on softer soils, reducing their intensity, while on stiffer soils, the ground motion intensity tends to amplify. Consequently, the structural response tended to increase on stiffer soils compared to softer soils.