검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Currently, the cutting oil supply device is not equipped to cool the cutting oil. Therefore, additional cooling device should be connected to cool the cutting oil. This has the disadvantage of increasing the size of the device and reducing its cooling capability. To overcome these shortcomings, cooling coils are applied to the outside of the cutting oil filtering device to develop a heat exchanger filter for simultaneous coolant filtering and cooling to improve the compactness of the cutting oil supply device and cooling capability of the cutting oil. For the development of heat exchanger filter, flow and heat transfer analysis were performed. Due to the small heat transfer area of 10 cooling coils, less heat exchange occurred. In the 20 cooling coils, the coolant cooling coils prevented smooth flow of the cooling oil in the heat exchanger filter. The cooling efficiency of the 15 cooling coils were best, and the cooling temperature decreased non-linearly as the supply flow rate of the cutting oil increased.
        4,000원
        2.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the demand for high-speed and high-precision machining increases, the need for cooling and filtering of cutting oil is high. A new concept of coolant heat exchange filter is developed by installing cooling coil through which refrigerant(R410-a) passes through the coolant filtering device. For structural safety evaluation of the heat exchanger filter for cutting oil suppling device of machine tool, thermal stress and vibration analysis were performed using ANSYS program. The results of structural and thermal stress analyses have led to the conclusion that the cooling system has structural stability. From modal analysis, first natural frequency is 12.37 hz and deformation is 22.041 mm. Sixth natural frequency is 26.887 hz and deformation is 25.563 mm.
        4,000원
        4.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, we developed optimal heat supply algorithm which minimizes the heat loss through the distribution pipe line in group energy apartment. Heating load variation of group energy apartment building in accordance with outdoor air temperature was predicted by the correlation obtained from calorimeter measurements of whole households of apartment building. Supply water temperature and mass flow rate were conjugately controlled to minimize the heat loss rate through distribution pipe line. Group heating apartment located in Hwaseong city, Korea, which has 1,473 households divided in 4 regions, was selected as the object apartment for verifying the present heat supply control algorithm. Compared to the original heat supply system, 10.4% heat loss rate reduction can be accomplished by employing the present control algorithm.
        4,000원