KOREASCHOLAR

아미노산 첨가가 꽃송이버섯 균사체 성장 및 베타글루칸, GABA 함량 변화에 미치는 영향 Effect of addition amino acids on the mycelial growth and the contents of β-glucan and γ-aminobutyric acid (GABA) in Sparassis latifolia

조한교, 신현재
  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/326618
한국버섯학회지
제15권 제1호 (2017.03)
pp.38-44
한국버섯학회 (The Korean Society of Mushroom Science)
초록

Sparassis latifolia (formerly S. crispa) is used in food and nutraceuticals or dietary supplements, as rich in flavor compounds and β-glucan. Some previous studies have reported the effects of mushroom on brain function, including its neuroprotective effect. Thus, for this mushroom to be used as an effective nutraceutical for brain function, it would be desirable for it to contain other compounds such as γ-aminobutyric acid (GABA) in addition to β-glucan. In this study, the enhancement of growth and GABA production in the mycelium of medicinal and edible mushroom S. latifolia was investigated. Amino acids were added externally as the main source of nutrition, and the effects of amino acids were investigated using liquid medium, specifically amino acid-free potato dextrose broth (PDB). The amino acids added were L-glutamic acid (named PDBG medium) and L-ornithine (named PDBO medium). The growth of mycelia was determined to be 0.9 ± 0.00 g/L, 2.2 ± 0.16 g/L, and 1.93 ± 0.34 g/L PDBG respectively. The GABA content was 21.3 ± 0.9 mg/100 g in PDB medium, and it in PDBG 1.4% medium, at 115.4 ± 30.2 mg/100 g. However, the PDBO medium was not effective in increasing the GABA content of mycelia. Amino acids had little effect on the β-glucan content of mycelia. The β-glucan content was 39.7 ± 1.4 mg/100 mg, 34.4 ± 0.2 mg/100 mg, and 35.2 ± 9.2 mg/100 mg in PDB, PDBG 1.8% and PDBO 1.4% media, respectively. Addition of glutamic acid and ornithine positively affected the growth of S. latifolia mycelia, and glutamic acid positively affected GABA production; no degradation of GABA was observed with addition of glutamic acid.

저자
  • 조한교(조선대학교 대학원 화학공학과) | Han-Gyo Jo
  • 신현재(조선대학교 대학원 화학공학과) | Hyun-Jae Shin Corresponding author